Phenolic Compounds and Antimicrobial Activity of Olive (Olea europaea L.) Leaves

DOI: 10.18805/ajdfr.DR-240    | Article Id: DR-240 | Page : 237-241
Citation :- Phenolic Compounds and Antimicrobial Activity of Olive (Olea europaea L.) Leaves.Asian Journal of Dairy and Food Research.2022.(41):237-241
S. Bensehaila, F. Ilias, F. Saadi, N. Zaouadi s.bensehaila@univ-dbkm.dz
Address : Department of Biology, University of Djilali Bounaama, Khmis Miliana, Ain Defla, Algeria.
Submitted Date : 10-05-2021
Accepted Date : 11-02-2022


Background: Olive leaves are of great interest, especially in traditional medicine. The polyphenols contained in olive leaves play an important role in this respect, as they have anti-carcinogenic, anti-inflammatory and anti-microbial properties. Olive leaves share phenolic compounds with other plants, but they also contain phenolic compounds belonging to the Oleaceae family. 
Methods: We report the determination of phenolic compounds in olive leaves by HPLC and the evaluation of their in vitro activity against several microorganisms that may be causal agents of human intestinal and respiratory tract infections, Staphylococcus aureus, Bacillus cereus, Escherichia coli, Pseudomonas aeruginosa, Klebsiella pneumonia, Enterobacter cloacae, Proteus mirabilis and Salmonella typhimurium.
Result: The results reveal that the olive leaves may constitute a good source of antimicrobial agents. The high performance liquid chromatography (HPLC) analysis showed the presence of five phenolic compounds: oleuropein, ascorbic acid, rutin, catechinand verbascoside and for the first time ascorbic acid. At low concentrations, olive leaf extracts showed an unusual antibacterial action, which suggests their great potential as nutraceuticals, particularly as a source of phenolic compounds.


Antimicrobial activity Antimicrobial Ascorbic acid Catechin HPLC Olive leaves Phenols Rutin


  1. Agrios, G. (1997). Plant pathology. 4th Ed. Academic Press, San Diego.
  2. Alkooranee, J.T., Al-khshemawee, H.H., Al-badri, M.A.K., Al-srai, M.S. and Daweri, H.H. (2020). Antifungal activity and GC- MS detection of leaves and roots parts of Chenopodium album extract against some phytopathogenic fungi. Indian Journal of Agricultural Research. 54: 117-121.
  3. Bajpai, V.K., Rahman, A. and Kang, S.C. (2007). Chemical composition and anti-fungal properties of the essential oil and crude extracts of Metasequoia glyptostroboides Miki ex Hu. Ind Crop Prod. 26: 28-35.
  4. Barnett, H. and Hunter, B. (2006). Illustrated Genera of Imperfect Fungi. Minnesota APS Press.
  5. Battinelli, L., Daniele, C., Cristiani, M., Bisignano, G., Saija, A. and Mazzanti, G. (2006). In vitro antifungal and anti-elastase activity of some aliphatic aldehydes from (Oleae europaea L.) fruit. Phytomedicine.13: 558-563.
  6. Benavente-garcia, O., Castillo, J., Lorente, J., Ortuno, A. and Del rio, J.A. (2000). Antioxidant activity of phenolics from (Olea europaea L.)  Leaves. Food Chem. 68: 457-462.
  7. Berghe, V.A. and Vlietinck, A.J. (2001). J of Ethnopharmacology. 128: 476-481.
  8. Bisignano, G., Tomaino, A., Lo cascio, R., Crisafi, G., Uccella, N. and Saija, A. (1999). On the in-vitro antimicrobial activity of oleuropein and hydroxytyrosol. J Pharm Pharmacol. 51: 971-974.
  9. Blekas, G., Vassilakis, C., Harizanis, C., Tsimidou, M. and Boskou, D.G. (2002). Biophenols in table olives. J Agric Food Chem. 50: 3688-3692.
  10. Cowan, M.M. (1999). Plant products as antimicrobial agents. Clin Microbiol Rev. 12: 564-582.
  11. Daayf, F. (1993). La verticilliose du cotonnier. Pouvoir pathogène et diversité génétique de Verticilliumdahliae, réactions de la plante à l’infection. Doctorat dissertation, Université de Montpellier France. 14-20.
  12. Das, S.K., Dharan, J.B., Pavitra, P.V. Das, S., Behera, S.P., Veilumuthu, P. and Christopher, J.G. (2021). Investigation on the phenolic content in Moringa oleifera and its antimicrobial activity. Indian Journal of Agricultural Research. 10.18805/IJARe.A-5636.
  13. Debjani C., Prerna D., Seweta S., Soumen S. and Susamoy K. (2018). Role of botanical plant extracts to control plant pathogens:A review. Indian J. Agric. Res. 52: 341-346
  14. Del rio, J.A., Baidez, A.G., Botia, J.M. and Ortuno, A. (2003). Enhancement of phenolic compounds in olive plants (Olea europaea L.) and their influence on resistance against Phytophtorasp. Food Chem. 83: 75-78.
  15. Denyer, S.P. and Stewart, G.S.A.B. (1998). Mechanisms of action of disinfectants. Int Biodetect Biodeg. 41: 261-268.
  16. Esti, M. and Cinquanta, L., La Notte, E. (1998). Phenolic compounds in different olive cultivars. J Agric Food Chem. 46: 32-35.
  17. Furneri, P.M., Marino, A., Saija, A., Uccella, N. and Bisignano, G. (2002). In vitro antimycoplasmal activity of oleuropein. Int J Antimicrob Agents. 20: 293-296.
  18. Garcia, O.B., Castillo, J., Lorente, J., Ortuno, A. and Del rio, J.A. (2000). Antioxidant activity of phenolics extracted from [Olea europaea (L.)] leaves. Food Chem. 68: 457-462.
  19. Guinda, A., Albi, T., Camino, M.C.P. and Lanzon, A. (2004). Supplementation of oils with oleanolic acid from the olive leaf (Olea europaea). Eur J Lipid Sci Technol. 106: 22-26.
  20. Gutierrez, MC., Brisse, S., Brosch, R., Fabre, M., Omaïs, B., Marmiesse, M., (2005). Ancient origin and gene mosaicism of the progenitor of Mycobacterium tuberculosis. PLoS Pathog 1(1): e5. doi:10.1371/ journal.ppat.0010005.
  21. Gutirrez, F., Jimenez, B., Ruiz, A. and Albi, M.A. (1999). Effect of olive ripeness on the oxidative stability of virgin olive oil extracted from the varieties Picual and Hojiblanca and on the different components involved. J. Agric Food Chem. 47: 121-127.
  22. Hansen, K., Adsersen, A., Christensen, B.S., Brooegger, S., Rosendal, J.S., Nyman, U., Wagner and Smitt, U. (1996). Isolation of an angiotensin converting enzyme (ACE) inhibitor from Olea europaea and Olea lancea. Phytomedicine. 2: 319-324.
  23. Kukic, J., Popovic, V., Petrovic, S., Mucaji, P., Ciric, A., Stojkovic, D. and Sokovic, M. (2008).  Antioxidant and antimicrobial activity of Cynara cardunculus extracts. Food Chem. 107: 861-868.
  24. Kumar A. and Sharma N. (2016). Characterization of olive cultivars for drought tolerance potential under rainfed conditions of Himachal Pradesh. Indian J. Agric. Res. 50: 440-445.
  25. Marsilio, V. and Lanza, B. (1998). Characterisation of an oleuropein degrading strain of Lactobacillus plantarum. Combined effects of compounds present in olive fermenting brines (phenols, glucose and NaCl) on bacterial activity. J Sci Food Agric. 76: 520-524.
  26. Meirinhos, J., Silva, B., Valentao, P., Seabra, R.M., Pereira, J.A., Dias, A., Andrade, P.B. and Ferreres, F. (2005). Analysis and quantification of flavonoidic compounds from Portuguese olive (Olea europaea L.)  leaf cultivars. Nat Prod Res. 19: 189-195.
  27. Pathak, V. (1997). Postharvest fruit pathology-Present status and future possibilities. Indian Phytopathology. 50: 161-185.
  28. Pereira, A.P., Ferreira, I., Marcelino, F., Valentao, P., Andrade, P.B., Seabra, R., Estivinho, L., Bento, A. and Pereira, J.A. (2007). Phenolic compounds and antimicrobial activity of olive [Olea europaea (L.) Cv. Cobrançosa] leaves. Molecules. 12: 1153-1162.
  29. Pereira, J.A, Pereira, A.P.G., Ferreira, I.,Valenta, P., Andrade, P.B., Seabra, R., Estevinho, L. and Bento, A. (2006). Table olives from Portugal: Phenolic compounds, antioxidant potentialand antimicrobial activity. J Agric Food Chem. 54: 8425-8431.
  30. Rojas, T.R., Sampayo, C.A.F., Vazquez, B.I., Franco, C.M. and Cepada, A. (2005). Study of interferences by several metabolites from Aspergillus spp. in the detection of aflatoxigenic strains in media added with cyclodextrin. Food Control. 16: 445-450.
  31. Rojas, Y.M., Rincón, J.J., Gallardo, Y.S., Leal, M., (2004). Evaluation of frequencies and court heights in three cultivars [Cynodon dactylon (L.)] Pers., under conditions of tropical very dry forest. (II) nutritious value. Zoot. Trop. 22(2): 175-181.
  32. Romero, C., Brenes, M., Yousfi, K., Garcia, P., Garcia, A. and Garrido, A. (2004). Effect of cultivar and processing method on the contents of polyphenols in table olives. J Agric Food Chem. 52: 479-484.
  33. Romero, M.P., Tovar, M.J., Giroma, J. and Motilva, M.J. (2002). Changes in the HPLC phenolic profile of virgin olive oil from young trees [Olea europaea (L.) Cv. Arbequina] grown under different deficit irrigation strategies. J Agric Food Chem. 50: 5349-5354.
  34. Ruiz-barba, J.L., Garrido-fernandez, A. and Jimenez-diaz, R. (1991). Bactericidal action of oleuropein extracted from green olives against Lactobacillus plantarum. Lett Appl Microbiol. 12: 65-68.
  35. Salvador, M.D., Aranda, F. and Fregapane, G. (2001). Influence of fruit ripening on “Cornicabra” virgin olive oil quality. A study of four successive crop seasons. Food Chem. 73: 45-53.
  36. Samuelsson, G. (1951). The blood pressure lowering factor in leaves of Olea europaea. Farmacevtisk Revy. 15: 229- 239.
  37. Tereschuck, M.L., Riera, M.V.Q., Castro, G.R. and Abdala, L.R. (1997). Antimicrobial activity of flavonoids from leaves of Tagetes minuta. J of Ethnopharmacology. 56: 227-232.
  38. Vinha, A.F., Ferreres, F., Silva, B.M., Valentao, P., Goncualves, A. and Perreira, J.A. (2005). Oliveira MBP P, Seabra RMandrade PB. Phenolic profiles of Portuguese olive fruits (Olea europaea L.): Influence of cultivar and geographical origin. Food Chem. 89: 561-568.
  39. Zambonelli, A., Aulerio, A.Z., Bianchi, A. and Albasini, A. (1996). Effects of essential oils on phytopathogenic fungi in vitro. J Phytopatol. 144: 491-494.
  40. Zarzuelo, A., Duarte, J., Jimenez, J. and Gonzales, M. (1991). Utrilla Vasodilator effect of olive leaf. Planta Med. 57: 417-419.

Global Footprints