Farmer’s Stance on Antibiotic Resistance to E. coli and Extended Spectrum - β -lactamase Producing (ESBL) E. coli Isolated from Poultry Droppings

DOI: 10.18805/ajdfr.DR-1574    | Article Id: DR-1574 | Page : 88-93
Citation :- Farmer’s Stance on Antibiotic Resistance to E. coli and Extended Spectrum - β -lactamase Producing (ESBL) E. coli Isolated from Poultry Droppings.Asian Journal Of Dairy and Food Research.2021.(40):88-93
R. Durairajan, M. Murugan, K. Karthik, K. Porteen duraivet2006@gmail.com
Address : Veterinary University Training and Research Centre, Tamil Nadu Veterinary and Animal Sciences University, Melmaruvathur-603 319, Tamil Nadu, India.
Submitted Date : 8-09-2020
Accepted Date : 19-02-2021

Abstract

Background: This study was conducted to explore the contribution of poultry farms to the contamination of the environment with ESBL-producing Escherichia coli and there with, potentially to the spread of these bacteria to humans and other animals. Hence, the present work is a poultry farm based study aimed to detect prevalence of ESBL producing E.coli among poultry of small scale farmers.
Methods: ESBL-producing E. coli were detected at poultry farm (n=40). The E. coli was isolated from poultry droppings in irrespective of diseases. The required data were collected through well-structured interview schedule in farm premises. E.coli isolates were more susceptible to Gentamicin, Aztreonarm, Cefrtrazindime and Cefotoxime. 
Result: Detection of ESBL isolates was performed by Combined Disc Diffusion Methods. Out of 40 E.coli isolates 12 were phenotypically identified as ESBL producers. The prevalence of CTX-m gene is 50% and Bla (TEM) gene is 50%. 

Keywords

Antibiotics E. coli ESBL Poultry droppings Resistance Susceptibility

References

  1. Aliasadi, S and Dastmalchi Saei, H. (2015). Fecal carriage of Escherichia coli harboring extended-spectrum beta-lactamase (ESBL) genes by sheep and broilers in Urmia region, Iran. Iranian Journal of Veterinary Medicine. 9(2): 93-101.
  2. Amaechi, N. (2014). A survey on antibiotic usage in pigs and poultry birds in Abia State, Nigeria. Global Journal of Medical Research. 14(5): 10-18. 
  3. Apaka, P.E., Legall, B. and Padman, J. (2010). Molecular detection and epidemiology of extended spectrum beta-lactamase genes prevalent in clinical isolates of Klebsiella pneumonae and E. coli from Trinidad and Tobago. West Indian Medical Journal. 59(6): 591-596.
  4. Bashahun, D.G.M. and T.A. Odoch. (2015). Assessment of antibiotic usage in intensive poultry farms in Wakiso district, Uganda. Livestock Research Rural Development. 27(12): 1-11.
  5. Boamah, V. E. C., Agyare, H. and A. Dalsgaard. (2016). Practices and factors influencing the use of antibiotics in selected poultry farms in Ghana. Journal of Antimicrobial Agent. 2(2): 1-8.
  6. Carrique-Mas, J. J., Trung, N.V., Hoa, N.T., Mai, H.H., Thanh, T.H., Campbell, J.I., Wagenaar, J.A., Hardon, A., Hieu, T.Q. and Schultsz, C. (2013). Antimicrobial usage in chicken production in the Mekong Delta of Vietnam. Zoonosis and Public Health. 62(1): 70-78.
  7. Cheaito, K. and Matar. G.M. (2014). The Mediterranean region: a reservoir for CTX-M-ESBL producing Entero bacteiacaes. Jord. Journal of Biological Sciences. 7(1): 1-6
  8. CLSI. (2012). Performance Standards for Antimicrobial Susceptibility Testing: Twenty Second Informational Supplement. M100-S22. Clinical and Laboratory Standards Institute, Wayne, PA, USA.
  9. Dewangan, P., Sanjay, S., Anil, P., Nitin, E., Gade and Bhoomika (2017). Prevalence and molecular characterization of extended-spectrum –Lactamases (blaTEM) producing Escherichia coli isolated from humans and foods of animal origin in Chhattisgarh, India. Indian Journal of Animal Research. 51(2): 310-315
  10. Guido, D. M., Stefania, C., Anna, P., Tiziano, D., Giulia, M., Romina, B., Fabrizio, A. and Lebana Bonfanti (2019). Farmers’ attitudes towards antimicrobial useb and awareness of antimicrobial resistance: a comparative study among turkey and rabbit Farmers. Italian Journal of Animal Science. 18(1): 194-201.
  11. Haldorsen, B. C. (2011). Aminoglycosides resistance in clinical gram negative isolates from Norway (thesis). North Norway (NO). University of Troms 
  12. Jacoby, A.G. and Munoz-Price, L.S. (2005). Mechanisms of disease the new beta lactamase. Norway Journal of Medicine. 325: 380-391.
  13. Jaulkar, A.D., Zade, N.N., Katre, D.D., Khan, D.D., Chaudhary, S.P. and Shinde, S.V. (2011). Plasmid characterization of Salmonella isolated from foods of animal origin. Journal of Veterinary Public Health. 9(1): 25-28.
  14. Joint Fao/Who (2004). Residues of Veterinary Drug without ADI/    MRL. Final report of technical workshop in Bangkok, 24-26 August.
  15. Kabir, J., Umoh, V.J. Audu-Okoh, E. Umoh, J.U. and Kwaga, J.K.P. (2004). Veterinary drug use in poultry farms and determination of antimicrobial drug residues in commercial eggs and slaughtered chicken in Kaduna State, Nigeria. Food Control. 15: 99-105.
  16. Kamini, M.G., Keutchatang, F.T., Mafo, H.Y., Kansci, G. and Nama, G.M. (2016). Antimicrobial usage in the chicken farming in Yaounde, Cameroon: a cross-sectional study. International Journal of Food Contamination. 3(10): 1-6.
  17. Kanj, S.S. and Kanafani, Z.A. (2011). Current concepts in antimicrobial therapy against resistant gram negative organisms: extended spectrum beta lactamase producing Entero- -bacteriaceae. Mayo Clinical Procedure. 86: 250-9. 
  18. Krishnasamy, V., Otte, J. and Silbergeld, E. (2015). Antimicrobial use in Chinese swine and broiler poultry production. Antimicrobial Resistance Infection Control. 4(17): 1-9.
  19. Krumperman, P.H. (1983). Multiple antibiotic resistance indexing of Escherichia coli to identify high-risk sources of faecal contamination of foods. Applied Environment Microbiology. 46(1): 165-170. 
  20. Martino. P., Stefania. C., Anna. P., Tiziano. D., Giulia. M., Romina. B., Fabrizio. A. and Lebana. B. (2018). Farmers’ attitudes towards antimicrobial use and awareness of antimicrobial resistance: a comparative study among turkey and rabbit farmers. Italian Journal of Animal Science. 18(1): 194-201.
  21. Monstein, H.J., Ostholm-Balkhed, A., Nilsson, M.V., Dornbusch, K., Nilsso, L.E. (2007). Multiplex PCR amplification assay for rapid detection of blaSHV blaTEM and blaCTX-M genes in enterobacteriaceae. A.P.M.I.S. 115(1): 400-408.
  22. Nalband, R.P., Kolhe, P.D., Deshpande, S.N., Jadhav, D.G., Gandhale, D.M., Muglikar, S.R., Kolhe, S.S., Bhave, U.V., Jagtap, C.V. and Dhandore. (2020). Characterization of Escherichia coli Isolated from Bovine Subclinical Mastitis for Virulence Genes, Phylogenetic Groups and ESBL Production. Indian Journal of Animal Resarch. 54(10): 1265-1271.
  23. Newell, D.G., Koopmans, M., Verhoef, L., Duizer, E., Aidara-Kane, A., Sprong, H., Opsteegh, M., Langelaar, M., Threfall, J., Scheutz, F., Van Der Giessen, J. and Kruse, H. (2010). Food borne diseases the challenges of 20 years ago still persist while new ones continue to emerge. International Journal of Food Microbiology.139: 3-15.
  24. Ngwai, Y,B., Iliyasu, H., Young, E., Owuna, G. (2012). Bacteriuria and antimicrobial susceptibility of Escherichia coli isolated from Urine of Asymptomatic University Students in Keffi, Nigeria. Journal of Microbiology. 5(1): 323-327.
  25. Nordmann, P., Poirel. L. (2002). Emerging carbapenemases in gram negative aerobes. Clinical Microbiology Infection. 8: 321-31.
  26. Olowe, O.A., Adewumi, O., Odewale, G., Ojurongbe, O., Adefioye, O.J. (2015). Phenotypic and molecular characterization of extended-spectrum beta-Lactamase producing Escherichia coli obtained from animal fecal samples in Ado Ekiti, Nigeria. Journal of Environment and Public Health. 40: 243-245.
  27. Paterson, L. D. and Bonomo, A.R. (2005). Extended spectrum beta lactamase: A clinical update. Clinical Microbiology Review. 18(4): 657-686.
  28. Rituparna, T., Susweta, M., Nimita, V., Sangita, D., Feroze, G., Arnab, S., Rajeswari, S., Habibur, R. and Bibek, R.S. (2019). Phenotypic and molecular characterization of extended spectrum β-lactamase, AmpC β-lactamase and metallo β-lactamase producing Klebsiella spp. from farm animals in India. Indian Journal of Animal Research. 53(7): 938-943
  29. Samarh, A.K., Meyer, M.T., Boxall, A.B. (2006). A global perspective on the use, sales, exposure pathways, occurrence, fate and effects of veterinary antibiotics (VAs) in the environment. Chemosphere. 65: 725-759.
  30. Schink, A.K., Kadlec, K., Kaspar, H., Mankertz, J. and Schwarz, S. (2013). Analysis of extended-spectrum-beta-lactamase-producing Escherichia coli isolates collected in the GERM-Vet monitoring programme. Journal of Antimicrobial Chemotherapy.68:1741–1749..
  31. Schlundt, J., Toyofuku, H., Jansen, J. and Herbst, S.A. (2004). Emerging food-borne zoonoses. Review of Science and Technology. 23(2): 513-533.
  32. Sridar, M.M.J., Picard, S., Bisschop and Gummow, B. (2012). A questionnaire survey of poultry layer farmers in Khartoum State, Sudan, to study their antimicrobial awareness and usage patterns. Onderstepoort. Journal of Veterinary Research. 79(1): 1-8.
  33. Tame, S.C., Ngwai,Y.B., Nkenel, I.H. and Abimiku, R.H. (2019). Molecular detection of extended spectrum betalactamase resistance in Escherichia coli from poultry droppings in Keffi, Nigeria. Asian Journal of Medicne and Health. 15(4): 1-9.
  34. Tiwari. R., Susweta, M., Nimita, V., Sangita, D., Feroze, G., Arnab, S., Rajeswari, S., Habibur, R. and Bibek, R.S. (2019). Phenotypic and molecular characterization of extended spectrum β-lactamase, AmpC β-lactamase and metallo β-lactamase producing Klebsiella spp. from farm animals in India. Indian Journal of Animal Research. 53(7): 938-943.
  35. Unal, N., Karagoz, A., Askar, S., Dilik, Z., Yurteri, B. (2017). Extended- spectrum β- lactamases among cloacal Escherichia coli isolates in healthy broilers in Turkey. Turkish. Journal of Veterinary and Animal Science. 41(1): 72-76.
  36. Wei, H., Aengwanich, W. (2012). Biosecurity evaluation of poultry production cluster (PPCs) in Thailand. International Journal of Poultry Science. 11: 582-588.
  37. World Health Organization (2014). Antimicrobial Resistance: Global Report on Surveillance. World Health Organization, Geneva, Switzerland. Accessed on August 6, 2018. 

Global Footprints