The Possible Risk of Reverse Zoonosis in COVID-19: An Epidemiological Driving Approach for the One Health Future Challenges: A Review

DOI: 10.18805/ajdfr.DR-1543    | Article Id: DR-1543 | Page : 173-179
Citation :- The Possible Risk of Reverse Zoonosis in COVID-19: An Epidemiological Driving Approach for the One Health Future Challenges: A Review.Asian Journal Of Dairy and Food Research.2020.(39):173-179
Viswanathan Naveenkumar, B.S. Pradeep Nag, R. Vijayaraghavan, K. Porteen rajavet2002@gmail.com
Address : Department of Research and Development, Saveetha Institute of Medical and Technical Sciences, Chennai-602 105, Tamil Nadu, India.
Submitted Date : 13-06-2020
Accepted Date : 8-09-2020

Abstract

The emerging coronaviral infection named as COVID-19 was officially declared as pandemic on 11, March 2020 by WHO. It has so far been reported from 215 countries or territories affecting about twenty seven million people infected globally. The novel attributes on COVID-19 with sporadic reports on animal, alarms the future chances of animal mediated COVID-19 transmission. Despite lockdown in two-third of the global population, health officials are worried about the risky nature of animal infection in the current pandemic situation. The reverse zoonotic index cases in the current epidemic reported sporadically in animals through infected humans. Reported evidence suggests that bat as the major reservoir involved in COVID-19. However, still, the role of intermediate host involvement in the human COVID-19 transmission from the bat is not yet understood. It is clear that humans play a potent source of infection to transmit the disease to other humans and animals. A literature survey was conducted to a) understand the level of animal’s involvement in COVID19 pandemic and b) to measure the amount of risk of reverse zoonoses in pet animals, exposed animals etc. The epidemiological investigation suggested the need for strong surveillance on the human-animal interface area with strict advisory measures to combat this dangerous disease transmission to humans and other animals. Hence understanding animal’s role in the current pandemic is of prime importance in devising preparedness and control strategies through unique one health approach. In implementing suitable research protocol at animal-human interface along with environment by devising appropriate control strategies will reduce the future reverse zoonosis risk in the current pandemic through a holistic one health drive. 

Keywords

Animals COVID-19 Host One health Reverse zoonosis

References

  1. Anonymous. (2020a). United States Department of Agriculture, Animal and Plant Health Inspection Service. April 6, 2020. USDA Statement on the Confirmation of COVID-19 in a Tiger in NewYork, 2020. DOI: https://www.aphis.usda.gov/ aphis/newsroom/news/sa_by_date/ sa-2020/ny-zoo-covid-19.
  2. Anonymous. (2020b). Times of India, News. Two cats in New York, become first US pets to test positive for coronavirus. DOI: https://timesofindia.indiatimes.com/world/us/2-cats-in-new-york-become-first-us-pets-to-test-positive-forcoronavirus/ articleshow/75311029.cms. 
  3. Anonymous. (2020c). IDEXX March, IDEXX SARS-CoV-2 (COVID-19) RealPCR Test. DOI:https://www.idexx.com/en/veterinary/reference-laboratories/idexx-realpcr-tests/idexx-sars-cov-2-covid-19-realpcr-test/.
  4. Anonymous. (2020d). World Small Animal Veterinary Association. Advice for veterinarians about routine prophylactic vaccination during the COVID-19 pandemic. DOI: https://wsava.org/news/highlighted-news/the-new-coronavirus-and-companion-animals-advice-for-wsava-members/.
  5. Bao, L., Deng, W., Gao, H., Xiao, C., Liu, J., Xue, J., Lv, Q., Liu, J., Yu, P., Xu, Y., Qi, F. (2020). Reinfection could not occur in SARS-CoV-2 infected rhesus macaques. bioRxiv, preprint. DOI: 10.1101/2020.03.13.990226.
  6. Bedford, J., Enria, D., Giesecke, J., Heymann, D.L., Ihekweazu, C., Kobinger, G., Lane, H.C., Memish, Z., Oh, M.D., Schuchat, A., Ungchusak, K. (2020). COVID-19: towards controlling of a pandemic. The Lancet. 395(10229):1015-1018. DOI: 10.1016/S0140-6736(20)30673-5.
  7. Britton, P., Armesto, M., Cavanagh, D., Keep, S. (2012). Modification of the avian coronavirus infectious bronchitis virus for vaccine development. Bioengineered. 3(2): 114-119. DOI: 10.4161/bbug.18983. 
  8. Callaway, E. (2020). Labs rush to study coronavirus in transgenic animals-some are in short supply. Nature. 579(7798):183. DOI: 10.1038/d41586-020-00698-x. 
  9. Cavanagh, D. (2005). Coronaviridae: a review of coronaviruses and toroviruses. In Coronaviruses with Special Emphasis on First Insights Concerning SARS, Birkhäuser Basel. pp. 1-54. DOI: 10.1007/3-7643-7339-3_1.
  10. Chan, J.F.W., Zhang, A.J., Yuan, S., Poon, V.K.M., Chan, C.C.S., Lee, A.C.Y., Chan, W.M., Fan, Z., Tsoi, H.W., Wen, L., Liang, R. (2020). Simulation of the clinical and pathological manifestations of Coronavirus Disease 2019 (COVID-19) in golden Syrian hamster model: implications for disease pathogenesis and transmissibility. Clinical Infectious Diseases. cia325. DOI: 10.1093/cid/ciaa325. 
  11. Chang, L., Yan, Y., Wang, L. (2020). Coronavirus disease 2019: coronaviruses and blood safety. Transfusion Medicine Reviews. 34:75-80. DOI: 10.1016/j.tmrv.2020.02.003
  12. Chen, W., Yan, M., Yang, L., Ding, B., He, B., Wang, Y., Liu, X., Liu, C., Zhu, H., You, B., Huang, S. (2005). SARS-associated coronavirus transmitted from human to pig. Emerging Infectious Diseases. 11(3): 446-448. DOI: 10.3201/eid1103.040824.
  13. Cui, J., Li, F., Shi, Z.L. (2019). Origin and evolution of pathogenic coronaviruses. Nature Reviews Microbiology. 17(3):181-192. DOI:10.1038/s41579-018-0118-9. 
  14. Demogines, A., Farzan, M., Sawyer, S.L. (2012). Evidence for ACE2- utilizing coronaviruses (CoVs) related to severe acute respiratory syndrome CoV in bats. Journal of Virology. 86(11):6350-6353. DOI: 10.1128/jvi.00311-12. 
  15. Du Toit, A. (2020). Outbreak of a novel coronavirus. Nature Reviews Microbiology. 18(3):123. DOI: 10.1038/s41579-020-0332-0.
  16. El-Duah, P., Sylverken, A., Owusu, M., Yeboah, R., Lamptey, J., Oppong Frimpong, Y., Burimuah, V., Antwi, C., Folitse, R., Agbenyega, O., Oppong, S. (2019). Potential intermediate hosts for coronavirus transmission: No evidence of Clade 2c coronaviruses in domestic livestock from Ghana. Tropical Medicine and Infectious Disease. 4(1): 34. DOI: 10.3390/tropicalmed4010034.
  17. Gao, W.H., Lin, X.D., Chen, Y.M., Xie, C.G., Tan, Z.Z., Zhou, J.J., Chen, S., Holmes, E.C., Zhang, Y.Z. (2020). Newly identified viral genomes in pangolins with fatal disease. Virus Evolution. 6(1): p.veaa020. DOI: 10.1093/ve/veaa020. 
  18. Goumenou, M., Spandidos, D.A., Tsatsakis, A. (2020). Possibility of transmission through dogs being a contributing factor to the extreme Covid 19 outbreak in North Italy. Molecular Medicine Reports. 21(6): 2293-2295. DOI: 10.3892/mmr. 2020.11037. 
  19. Gralinski, L.E. and Menachery, V.D. (2020). Return of the Coronavirus: 2019-nCoV. Viruses. 12(2):135. DOI: 10.3390/v12020135.
  20. Guo, Y.R., Cao, Q.D., Hong, Z.S., Tan, Y.Y., Chen, S.D., Jin, H.J., Tan, K.S., Wang, D.Y., Yan, Y. (2020). The origin, transmission and clinical therapies on coronavirus disease 2019 (COVID-19) outbreak–an update on the status. Military Medical Research. 7(1): 1-10. DOI: 10.1186/s40779-020-00240-0.
  21. Halfmann, P.J., Hatta, M., Chiba, S., Maemura, T., Fan, S., Takeda, M., Kinoshita, N., Hattori, S.I., Sakai-Tagawa, Y., Iwatsuki-Horimoto, K., Imai, M. (2020). Transmission of SARS-CoV-2 in Domestic Cats. New England Journal of Medicine. DOI: 10.1056/NEJMc2013400.
  22. Hasoksuz, M., Kilic, S., Saraç, F. (2020). Coronaviruses and SARS-CoV-2. Turkish Journal of Medical Sciences. 50(SI-1): 549-556. DOI: 10.3906/sag-2004-127.
  23. Heymann, D.L. and Shindo, N. (2020). COVID-19: what is next for public health? The Lancet. 395(10229): 542-545. DOI: 10.1016/S0140-6736(20)30374-3.
  24. Houser, K.V., Broadbent, A.J., Gretebeck, L., Vogel, L., Lamirande, E.W., Sutton, T., Bock, K.W., Minai, M., Orandle, M., Moore, I.N., Subbarao, K. (2017). Enhanced inflammation in New Zealand white rabbits when MERS-CoV reinfection occurs in the absence of neutralizing antibody. PLoS Pathogens. 13(8): p.e1006565. DOI: 10.1371/journal. ppat.1006565. 
  25. Jia, H.P., Look, D.C., Shi, L., Hickey, M., Pewe, L., Netland, J., Farzan, M., Wohlford-Lenane, C., Perlman, S., McCray, P.B. (2005). ACE2 receptor expression and severe acute respiratory syndrome coronavirus infection depend on differentiation of human airway epithelia. Journal of Virology. 79(23): 14614-14621. DOI: 10.1128/jvi.79.23. 14614-14621.2005. 
  26. Kandeil, A., Gomaa, M., Shehata, M., El-Taweel, A., Kayed, A.E., Abiadh, A., Jrijer, J., Moatasim, Y., Kutkat, O., Bagato, O., Mahmoud, S. (2019). Middle East respiratory syndrome coronavirus infection in non-camelid domestic mammals. Emerging Microbes and Infections. 8(1): 103-108. DOI: 10.1080/22221751.2018.1560235.
  27. Kasem, S., Qasim, I., Al-Hufofi, A., Hashim, O., Alkarar, A., Abu-Obeida, A., Gaafer, A., Elfadil, A., Zaki, A., Al-Romaihi, A., Babekr, N. (2018). Cross-sectional study of MERS-CoV-specific RNA and antibodies in animals that have had contact with MERS patients in Saudi Arabia. Journal of Infection and Public Health. 11(3): 331-338. DOI: 10.1016/j.jiph.2017.09.022. 
  28. Lake, M.A. (2020). What we know so far: COVID-19 current clinical knowledge and research. Clinical Medicine. 20(2): 124-127. DOI: 10.7861/clinmed.2019-coron.
  29. Li, Q., Guan, X., Wu, P., Wang, X., Zhou, L., Tong, Y., Ren, R., Leung, K.S., Lau, E.H., Wong, J.Y., Xing, X. (2020). Early transmission dynamics in Wuhan, China, of novel coronavirus –infected pneumonia. New England Journal of Medicine. 382: 1199-1207. DOI: 10.1056/NEJMoa2001316. 
  30. Lu, R., Zhao, X., Li, J., Niu, P., Yang, B., Wu, H., Wang, W., Song, H., Huang, B., Zhu, N., Bi, Y. (2020). Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. The Lancet. 395(10224): 565-574. DOI: 10.1016/S0140-6736 (20)30251-8. 
  31. O’Connor, A.M., Totton, S.C., Sargeant, J.M. (2020). A rapid review of evidence of infection of pets and livestock with human-associated coronavirus diseases, SARS, MERS and COVID-19 and evidence of the fomite potential of pets and livestock. Systematic reviews for animals and food, Available from: http://www.syreaf.org/wp-content/uploads/2020 /04/Rapid-Review-of-pets-as-fomites_3.pdf last accessed on 07-06-2020. 
  32. Parry, N.M. (2020). COVID-19 and pets: When pandemic meets panic. Forensic Science International: Reports. 2: 100090. DOI: 10.1016/j.fsir.2020.100090.
  33. Ren, L.L., Wang, Y.M., Wu, Z.Q., Xiang, Z.C., Guo, L., Xu, T., Jiang, Y.Z., Xiong, Y., Li, Y.J., Li, X.W., Li, H. (2020). Identification of a novel coronavirus causing severe pneumonia in human: a descriptive study. Chinese Medical Journal. 133:1015-1024. DOI: 10.1097/CM9.0000000000000722. 
  34. Temmam, S., Barbarino, A., Maso, D., Behillil, S., Enouf, V., Huon, C., Jaraud, A., Chevallier, L., Backovic, M., Pérot, P., Verwaerde, P. (2020). Absence of SARS-CoV-2 infection in cats and dogs in close contact with a cluster of COVID-19 patients in a veterinary campus. bioRxiv, preprint. DOI: 10.1101/2020.04.07.029090. 
  35. Vincent, A., Mamzer, H., Ng, Z., Farkas, K.J. (2020). People and their Pets in the Times of the COVID-19 Pandemic. Society Register. 4(3): 111-128. 
  36. Wan, Y., Shang, J., Graham, R., Baric, R.S., Li, F. (2020). Receptor recognition by the novel coronavirus from Wuhan: an analysis based on decade-long structural studies of SARS coronavirus. Journal of Virology. 94(7):e00127-20. DOI: 10.1128/jvi.00127-20. 
  37. Wang, M., Jing, H.Q., Xu, H.F., Jiang, X.G., Kan, B., Liu, Q.Y., Wan, K.L., Cui, B.Y., Zheng, H., Cui, Z.G., Yan, M.Y. (2005). Surveillance on severe acute respiratory syndrome associated coronavirus in animals at a live animal market of Guangzhou in 2004. Zhonghua liu xing bing xue za zhi= Zhonghua liuxingbingxue zazhi, 26(2):84-87 (In Chinese). DOI: https://pubmed.ncbi.nlm.nih.gov/1592 1605/.
  38. Wong, G., Bi, Y.H., Wang, Q.H., Chen, X.W., Zhang, Z.G., Yao, Y.G. (2020). Zoonotic origins of human coronavirus 2019 (HCoV-19/SARS-CoV-2): why is this work important? Zoological Research. 41(3):1-7.
  39. Wu, Y.C., Chen, C.S., Chan, Y.J. (2020). The outbreak of COVID-19: An overview. Journal of the Chinese Medical Association. 83(3): 217-220. DOI: 10.1097/JCMA.000000000000 0270.
  40. Zhang, Q., Zhang, H., Huang, K., Yang, Y., Hui, X., Gao, J., He, X., Li, C., Gong, W., Zhang, Y., Peng, C. (2020c). SARS-CoV-2 neutralizing serum antibodies in cats: a serological investigation. bioRxiv, preprint. DOI: 10.1101/2020.04.01. 021196. 
  41. Zhang, Z., Wu, Q., Zhang, T. (2020a). Probable Pangolin Origin of SARS-CoV-2 Associated with the COVID-19 Outbreak. Current Biology. 30:1346-1351. DOI: 10.1016/j.cub. 2020. 03.022.
  42. Zhang, Z., Wu, Q., Zhang, T. (2020b). Pangolin homology associated with 2019-nCoV. bioRxiv, preprint. DOI: 10.1101/2020.02. 19.950253. 

Global Footprints