Anti-Diabetic Activity of Egyptian Celery Apigenin

DOI: 10.18805/ajdfr.DR-142    | Article Id: DR-142 | Page : 341-346
Citation :- Anti-Diabetic Activity of Egyptian Celery Apigenin.Asian Journal Of Dairy and Food Research.2019.(38):341-346
Amira Ragab El Barky, Amany Abdel hamid Ezz, Karim Samy El-Said, Mohamed EL-Refaay Sadek and Tarek Mostafa Mohamed amiramaram52@yahoo.com
Address : Biochemistry Unit, Chemistry Department, Faculty of Science, Tanta University, Egypt.
Submitted Date : 1-10-2019
Accepted Date : 19-12-2019

Abstract

Diabetes is a metabolic disorder that occurs due to a deficiency in insulin secretion, action or both of them. Apigenin is a potent antioxidant, found mainly in celery. Therefore, this study aimed to display the biological activity of apigenin and it is a role in lowering blood glucose levels. Apigenin has been extracted from celery and administrated daily to streptozotocin-diabetic rats for six weeks.  Apigenin significantly minimizes blood glucose level, the activities of á-amylase, lipid profile and malondialdehyde in serum. On the other hand, liver glycogen has been elevated in diabetic rats that treated with apigenin. The histopathological and immunohistochemical results confirmed that apigenin can decrease degenerative changes in the pancreatic â-cells. So, this study, depicts that apigenin considers a hypoglycemic agent with the potency to normalize odd in the biochemical parameter of diabetes and keep the normal architecture of the islet cells of the pancreas. 

Keywords

Apigenin Diabetes Oxidative stress Streptozotocin

References

  1. Almeida, D., Braga, C., Novelli, E. (2012). Evaluation of lipid profile and oxidative stress in STZ-induced rats treated with antioxidant vitamin. Braz. arch. biol. technol. 55: 527-536.
  2. Andallu, B., Vinay Kumar, A., Varadacharyulu, N. (2009). Lipid abnormalities in streptozotocin-diabetes: Amelioration by Morus indica L. cv Suguna leaves. Int J Diabetes Dev Ctries. 29(3): 123–128.
  3. Andreassi, M., Barale, R., Iozzoand, P. (2011). The association of micronucleus frequency with obesity, diabetes and cardiovascular disease. Mutagenesis, 26: 77-83.
  4. Barrera, G. (2012). Oxidative stress and lipid peroxidation products in cancer progression and therapy. Oncology, 2012: 1-21.
  5. Bauer, J. (1982). Clinical Laboratory Methods” 9th Ed, the C.V. Company Waistline Industrial Missouri 63116 Chapter 33: p.555.
  6. Cao, X., Liu, B., Cao, W. (2013). Autophagy inhibition enhances apigenininduced apoptosis in human breast cancer cells. Chin J Cancer. Res. 25:212–222.
  7. Cazarolli, L., Kappel, V., Pereira, D. (2012). Anti-hyperglycemic action of apigenin-6-C-â-fucopyranoside from Averrhoa carambola. Fitoterapia. 83: 1176–1183.
  8. Cazarolli, L., Zanatta, L., Alberton, E. (2008). Flavonoids: prospective drug candidates. Mini Rev Med Chem. 8(13):1429–40.
  9. Dineshkumar, B., Mitra, A., Manjunatha, M. (2010). Comparative study of alpha amylase inhibitory activities of common antidiabetic plants of Kharagpur 1 block. Int J Green Pharm. 4:115-21. 
  10. EL Barky, A. R. (2012). Biochemical influence of alpha-lipoic acid on lipid peroxidation and antioxidant enzymes in blood and tissues of streptozotocin induced diabetes in rats. Ms. Thesis, faculty of Veterinary Medicine, Moshthor, Benha University.
  11. El Barky, A. R., Hussein, S., Alm Eldeen, A., Mohamed, T. M. (2016). Anti-diabetic activity of Holothuria thomasi saponin. Biomed. Pharmacother. 84: 1472–1487. 
  12. Ellefson, R., Caraway, W. (1976). Fundamentals of Clinical Chemistry. Ed Tietz NW, 506.
  13. El-Said, K., Ezz, A., El Barky, A. R., Mohamed, T. M. (2018). The potential role of male bone marrow mesenchymal stem cells of diabetic female rats. Diabetes Manag. 8(6):137-146. 
  14. Han, L., Sumiyoshi, M., Zheng, Y. (2003). Anti-obesity action of Salix matsudana leaves (part 2): Isolation of anti-obesity effectors from polyphenol fractions of Salix matsudana, Phytother Res. 17: 1195.
  15. Huang, C., Lii, C., Lin, A. (2013). Protection by chrysin, apigenin and luteolin against oxidative stress is mediated by the Nrf2-dependent up-regulation of heme oxygenase 1 and glutamate cysteine ligase in rat primary hepatocytes. Arch Toxicol. 87:167–178.
  16. Javadi, I., RashidiNooshabadi, M., Goudarzi, M. (2015). Protective effects of celery (Apiumgraveloens) seed extract on bleomycin-induced pulmonary fibrosis in rats. J BabolUniv Med Sci. 17(1):70–76.
  17. Jeyabal, P., Syed, M., Venkataraman, M. (2005). Apigenin inhibits oxidative stress-induced macromolecular damage in N-    Nitrosodiethylamine (NDEA)-induced hepatocellular carcinogenesis in wistar albino rats. Mol. Carcinog. 44: 11-20.
  18. Li, F., Yao, Y., Huang, H. (2016). Apigenin attenuates diabetes-    associated cognitive decline in rats via suppressing oxidative stress, nitric oxide synthase and anti-apoptotic pathway. Int J ClinExp Med. 9(6):8945–8952.
  19. Liu, D., Zhen, W., Yang, Z. (2006). Genistein acutely stimulates insulin secretion in pancreatic beta-cells through a cAMPdependent protein kinase pathway. Diabetes. 55(4):1043–50.
  20. Liu, Q., Chen, X., Yang, G. (2011). Apigenin inhibits cell migration through MAPK pathways in human bladder smooth muscle cells. Biocell. 35: 71-79.
  21. McCue, P. and Shetty, K. (2004). Inhibitory effects of rosmarinic acid extracts on porcine pancreatic amylase in vitro. Asia Pac J Clin Nut r. 13: 101-106.
  22. Mesbah, L., Soraya, B., Narimane, S. (2004). Protective effect of flavonides against the toxicity of vinblastine cyclophosphamide and paracetamol by inhibition of lipid-peroxydation and increase of liver glutathione. Haematol. 759-67.
  23. Ohno, M., Shibata, C., Kishikawa, T. (2013). The flavonoid apigenin improves glucose tolerance through inhibition of microRNA maturation in miRN A103 transgenic mice. Sci Rep. 3:2553–2559.
  24. Prieto, P., Pineda, M., Aguilar, M. (1999). Spectrophotometric quantitation of antioxidant capacity through the formation of a phosphomolybdenum complex: Specific application to the determination of Vitamin E1. Anal. Biochem. 269: 337–341.
  25. Qalawa, S. and Abd Elazeem, N. (2019). Association between Type II diabetic patient’s compliance with self-care, self-    efficacy and blood glucose control in Port-Said City. IOSR-JNHS journal. 8 (1): 36-44.
  26. Rajalakshmi, K., Christian, G., Shanmuga Priya, P. (2015). Validation of anti-diabetic potential of avirai kudineer a siddha herbal formulation-A review, J. Dental Med. Sci. 4: 07–15.
  27. Rother, K. (2007). Diabetes treatment-bridging the divide. 3. N Engl J Med. 356: 1499-501.
  28. Sakatani, T., Shirayama, T., Uzaki, Y. (2005). The association between cholesterol and mortality in heart failure. Comparison between patients with and without coronary artery disease, Int. Heart J. 46: 619-629.
  29. Sharma, P., Jha, A., Dubey, R. (2012). Reactive oxygen species, oxidative damage and antioxidative defense mechanism in plants under stressful conditions. J. Bot. 2012: 1-26.
  30. Stein, E. (1987). Lipids, lipoproteins and apolipoproteins. In: Fundamentals of Clinical Chemistry, 3rd ed. NW Tietz, ed. WB Saunders Philadelphia, 448.
  31. Tietz, N. (1986). Textbook of Clinical Chemistry. WB saunders, Philadelphia, 1271-1281.
  32. Tietz, N., E.D. (1990). Clinical Guide to Laboratory Tests. 2nd ed. WB Saunders, Philadelphia. 566.
  33. Tietz, N., ed. (1995). Clinical Guide to Laboratory Tests. 3rd ed. WB Saunders, Philadeiphia.268-273.
  34. Togenu, M., Austin, U., Joyce, A. (2013). Anti diabetic effect of aqueous leaf extract of Heinsia crinata on key glycolytic enzymes and glycogen in streptozotocin induced diabetic rats. Academia Journal of Scientific Research. 1: 109-114.
  35. Wang, E., Chen, F., Hub, X. (2014). Protective effects of apigenin against furan-induced toxicity in mice. Food Funct. 5: 1804.
  36. Wang, M., Li, J., Rangarajan, M. (1998). Antioxidative phenolic compounds from sage (Salvia officinalis). J. Agric. Food Chem. 46: 4869–4873.
  37. Winn-Deen, E., David, H., Sigler, G. (1988). Development of a Direct Assay for alpha-Amylase, Clin. Chem. 34(10): 2005-2008.
  38. Xu, J., Yuan, X., Lang, P. (1997). Determination of catalase activity and catalase inhibition by ultraviolet spectrophtometry. Chinese Environ. Chem. 16(1): 73–76.
  39. Zhang, K., Song, W., Li, D. (2017). Apigenin in the regulation of cholesterol metabolism and protection of blood vessels. Exp Ther Med. 13(5): 1719–1724.

Global Footprints