Loading...

Cholesterol Oxidation Products (COPs) in Ruminant Meat: A Biological and Pathological Approach: A Review

DOI: 10.18805/ajdfr.DR-134    | Article Id: DR-134 | Page : 191-202
Citation :- Cholesterol Oxidation Products (COPs) in Ruminant Meat: A Biological and Pathological Approach: A Review.Asian Journal of Dairy and Food Research.2019.(38):191-202
Hafid Nadia nadvet@yahoo.fr
Address :
Department of Veterinary Science, Laboratory of Environmental, Health and Animal Production. Institute of Veterinary Science and Agricultural Science, Batna University, 05000, Algeria.
Submitted Date : 5-07-2019
Accepted Date : 20-09-2019

Abstract

After slaughter, meat tissues lose their antioxidant defences, and more complex oxidative processes are initiated to form cholesterol oxidation products (COPs) – oxygenated derivatives of cholesterol. The oxysterol content in meat and meat products depends on factors such as temperature, heating time, storage time, packing conditions, and illumination. The composition and content of polyunsaturated fatty acids (PUFAs) and the age and the sex of the animal also influence the COP rate. The most common oxysterols present in meat and its products are 7-ketocholesterol, 20α-hydroxycholesterol, 25-hydroxycholesterol and α, β- epoxycholesterol. Oxysterols participate in a number of biological activities, such as cholesterol metabolism, the regulation of membrane fluidity and intracellular signalling pathways, by the activation of specific mediators, such as LXR, SREBPs and OSBP/ORP. However, their role in inflammatory, apoptotic, mutagenic, carcinogenic and toxic mechanisms can elucidate their effect on human health.

Keywords

Biological activities Cholesterol Human diseases Oxysterols Ruminant meat.

References

  1. Ahn, D. U., Nam, K. C., Du, M., & Jo, C. (2001). Effect of irradiation and packaging conditions after cooking on the formation of cholesterol and lipid oxidation products in meats during storage. Meat Science, 57(4): 413-418. doi: 10.1016/S0309-1740(00)00119-4
  2. Alioui, A. (2016). Rôle des récepteurs aux oxystérols LXRs (Liver X Receptors) dans la dissémination métastatique du cancer de la prostate. Doctoral dissertation, Université Blaise Pascal-Clermont-Ferrand II, 449p.
  3. Bendeddouche, B., Bensid, A., Houicher, A., & Bendeddouche, E. (2012). Conservation de la viande d’agneau. Viandes et Produits Carnés, 9.
  4. Bonnet, M.; Gruffat, D. & Hocquette, J.-F. (2010). Métabolisme lipidique des tissus musculaires et adipeux. In : Quae (Eds), Muscle et viande de ruminant, (81-90p).
  5. Bonoli, M., Caboni, M. F., Rodriguez-Estrada, M. T., & Lercker, G. (2007). Effect of feeding fat sources on the quality and composition of lipids of precooked ready-to-eat fried chicken patties. Food Chemistry, 101(4): 1327-1337. doi: 10.1016/j.foodchem.2006.03.038
  6. Boselli, E., Caboni, M. F., Rodriguez-Estrada, M. T., Toschi, T. G., Daniel, M., & Lercker, G. (2005). Photoxidation of cholesterol and lipids of turkey meat during storage under commercial retail conditions. Food Chemistry, 91(4): 705-713. doi: 10.1016/j.foodchem. 2004.06.043
  7. Boselli, E., Cardenia, V., & Rodriguez‐Estrada, M. T. (2012). Cholesterol photosensitized oxidation in muscle foods. European Journal of Lipid Science and Technology114(6): 644-655. doi:10.1002/ ejlt.201100352
  8. Brown, A. J., & Jessup, W. (2009). Oxysterols: sources, cellular storage and metabolism, and new insights into their roles in cholesterol homeostasis. Molecular aspects of medicine30 (3): 111-122. doi: 10.1016/j.mam.2009.02.005
  9. Chen, Y. (2016). Characterization of oxysterols produced in macrophages and mechanisms of regulation. Doctoral dissertation, Université de Lyon. INSA, 140p.
  10. Corcoran, R. B., & Scott, M. P. (2006). Oxysterols stimulate Sonic hedgehog signal transduction and proliferation of medulloblastoma cells. Proceedings of the National Academy of Sciences103(22): 8408-8413. doi:10.1073/pnas.0602852103
  11. Cullis, P. R., & Hope, M. J. (1991). Physical properties and functional roles of lipids in membranes. New Comprehensive Biochemistry. 20:1-41. doi:10.1016/S0167-7306 (08)6032 9-4
  12. Dantas, N. M., Sampaio, G. R., Ferreira, F. S., Labre, T. D. S., Torres, E. A. F. D. S., & Saldanha, T. (2015). Cholesterol oxidation in fish and fish products. Journal of Food Science80(12): R2627-R2639. doi: 10.1111/1750-3841.13124
  13. Derewiaka, D., & Obiedzinski, M. (2009). Oxysterol content in selected meats and meat products. Acta Scientiarum Polonorum. Technologia Alimentaria8(3).
  14. Diczfalusy, U. (2004). Analysis of cholesterol oxidation products in biological samples. Journal of AOAC International87(2): 467-473.
  15. Dinh, T. T. N. (2010). Development, validation, and application of cholesterol determination method for meat and poultry products using gas chromatography. Doctoral dissertation. Texas Tech University, 191p
  16. Domínguez, R., Gómez, M., Fonseca, S., & Lorenzo, J. M. (2014). Effect of different cooking methods on lipid oxidation and formation of volatile compounds in foal meat. Meat Science97(2): 223-230.  doi: 10.1016/j.meatsci.2014.01.023.
  17. Dutta, P.C., (2004). Accurate and reproducible methods for analysis of sterol oxidation products in foods: an overview. Journal of the American Official Analytical Chemists International, 87: 439-440.
  18. Dwyer, J. R., Sever, N., Carlson, M., Nelson, S. F., Beachy, P. A., & Parhami, F. (2007). Oxysterols are novel activators of the hedgehog signaling pathway in pluripotent mesenchymal cells. Journal of Biological Chemistry282(12): 8959-8968. doi: 10.1074/jbc. M611741200
  19. Echarte, M., Ansorena, D., & Astiasarán, I. (2003). Consequences of microwave heating and frying on the lipid fraction of chicken and beef patties. Journal of Agricultural and Food Chemistry, 51(20): 5941-5945. doi: 10.1021/jf0345245
  20. Evrat-Goergel, C. (2005). Etude préalable sur la construction d’une table de composition nutritionnelle des produits carnés (viande et abats de ruminants). Etude CIV OFIVAL, Institut de l’élevage.
  21. Ferioli, F., Caboni, M. F., & Dutta, P. C. (2008). Evaluation of cholesterol and lipid oxidation in raw and cooked minced beef stored under oxygen-enriched atmosphere. Meat Science80(3): 681-685. doi: 10.1016/j.meatsci.2008.03.005. 
  22. Fukumoto, H., Deng, A., Irizarry, M. C., Fitzgerald, M. L., & Rebeck, G. W. (2002). Induction of the cholesterol transporter ABCA1 in CNS cells by LXR agonists increases secreted Aß levels. Journal of Biological Chemistry. 277(50) : 48508-48513. doi : 10.1074/jbc.M209085200
  23. Gandemer, G. (1992). Les lipides de la viande : vers une estimation précise de leurs apports nutritionnels dans l’alimentation de l’homme. Cahiers de l’ENSBANA, 8: 25-48
  24. Gargiulo, S., Gamba, P., Testa, G., Leonarduzzi, G., & Poli, G. (2016). The role of oxysterols in vascular ageing. The Journal of Physiology594(8): 2095-2113. doi: 10.1113/ JP271168
  25. Gargiulo, S., Gamba, P., Testa, G., Rossin, D., Biasi, F., Poli, G., & Leonarduzzi, G. (2015). Relation between TLR4/NF‐κB signaling pathway activation by 27‐hydroxycholesterol and 4‐hydroxynonenal, and atherosclerotic plaque instability. Aging Cell14(4): 569-581. doi: 10.1111/acel.12322.
  26. Gill, S., Chow, R., & Brown, A. J. (2008). Sterol regulators of cholesterol homeostasis and beyond: the oxysterol hypothesis revisited and revised. Progress in Lipid Research47(6): 391-404. doi: 10.1016/j.plipres.2008.04.002.
  27. Hannedouche, S., Zhang, J., Yi, T., Shen, W., Nguyen, D., Pereira, J. P., ..,  Knochenmuss, R. (2011). Oxysterols direct immune cell migration via EBI2. Nature475(7357) : 524.  doi: 10.1038/nature10280.
  28. Hur, S. J., Park, G. B., & Joo, S. T. (2007). Formation of cholesterol oxidation products (COPs) in animal products. Food Control, 18(8): 939-947. doi:10.1016/j.foodcont.2006.05. 008.
  29. Hwang, K. T., & Maerker, G. (1993). Quantitation of cholesterol oxidation products in unirradiated and irradiated meats. Journal of American Oil Chemists' Society, 70(4): 371-375. doi: 10.1007/BF02552709
  30. Iuliano L, Micheletta F, Natoli S, Ginanni Corradini S, Iappelli M, Elisei W, Giovannelli L, Violi F, Diczfalusy U, (2003). Measurement of oxysterols and Į16 tocopherol in plasma and tissue samples as indices of oxidant stress status. Anal Biochem, 312: 217-223. doi: 10.1016/S0003-2697(02)00467-0
  31. Iuliano, L. (2011). Pathways of cholesterol oxidation via non-enzymatic mechanisms. Chemistry and Physics of Lipids164(6): 457-468. doi: 10.1016/j.chemphyslip.2011.06.006. 
  32. Jacob, L., & Lum, L. (2007). Deconstructing the hedgehog pathway in development and disease. Science, 318(5847): 66-68. doi: 10.1126/science.1147314
  33. Jialal, I., & Devaraj, S. (1996). Low-density lipoprotein oxidation, antioxidants, and atherosclerosis: a clinical biochemistry perspective. Clinical Chemistry, 42(4): 498-506.
  34. Javitt, N. B. (2015). Breast cancer and (25R)-26-hydroxycholesterol. Steroids104: 61-64. doi: 10.1016/j.steroids.2015.08.012.
  35. Kentala, H., Pfisterer, S. G., Olkkonen, V. M., & Weber-Boyvat, M. (2015). Sterol liganding of OSBP-related proteins (ORPs) regulates the subcellular distribution of ORP–VAPA complexes and their impacts on organelle structure. Steroids99:248-258. doi: 10.1016/j.steroids.2015.01.027. 
  36. Khan, M. I., Min, J. S., Lee, S. O., Yim, D. G., Seol, K. H., Lee, M., & Jo, C. (2015). Cooking, storage, and reheating effect on the formation of cholesterol oxidation products in processed meat products. Lipids in Health and Disease14(1): 89. doi: 10.1186/s12944-015-0091-5.
  37. Kim, W. K., Meliton, V., Amantea, C. M., Hahn, T. J., & Parhami, F. (2007). 20 (S)‐hydroxycholesterol inhibits PPARγ expression and adipogenic differentiation of bone marrow stromal cells through a hedgehog‐dependent mechanism. Journal of Bone and Mineral Research22(11): 1711-1719. doi: 10.1359/jbmr.070710
  38. Kloudova, A., Guengerich, F. P., & Soucek, P. (2017). The role of oxysterols in human cancer. Trends in Endocrinology & Metabolism28(7): 485-496. doi: 10.1016/j.tem.2017.03 .002. 
  39. Kölsch, H., Lütjohann, D., Ludwig, M., Schulte, A., Ptok, U., Jessen, F., ..., Heun, R. (2002). Polymorphism in the cholesterol 24S-hydroxylase gene is associated with Alzheimer's disease. Molecular psychiatry7(8): 899. doi: 10.1038/sj.mp.4001109
  40. Kulig, W., Cwiklik, L., Jurkiewicz, P., Rog, T., & Vattulainen, I. (2016). Cholesterol oxidation products and their biological importance. Chemistry and Physics of Lipids199: 144-160. doi: 10.1016/j.chemphyslip.2016.03.001
  41. Kumar, N., & Singhal, O. P. (1992). Effect of processing conditions on the oxidation of cholesterol in ghee. Journal of the Science of Food and Agriculture58(2): 267-273. doi: 10.1002/jsfa.2740580216
  42. Kuver, R. (2012). Mechanisms of oxysterol-induced disease: insights from the biliary system. Clinical Lipidology7(5): 537-548. doi: 10.2217/clp.12.53
  43. Lee, S. O., Lim, D. G., Seol, K. H., Erwanto, Y., & Lee, M. (2006). Effects of various cooking and re-heating methods on cholesterol oxidation products of beef loin. Asian Australasian Journal Of Animal Sciences19(5): 756.  doi: 10.5713/ajas.2006.756.
  44. Lee, H. S., Chang, J. S., Baek, J. A., Chung, M. Y., Lee, H. C., Rhim, B. Y., ..., Kim, K. (2005). TNF-α activates death pathway in human aorta smooth muscle cell in the presence of 7-ketocholesterol. Biochemical and Biophysical Research Communications333(4): 1093-1099. doi:10.1016/j.bbrc.2005.05.196
  45. Lee, J. I., Kang, S., Ahn, D. U., & Lee, M. (2001). Formation of cholesterol oxides in irradiated raw and cooked chicken meat during storage. Poultry Science80(1): 105-108. doi: 10.1093/ps/80.1.105
  46. Leonarduzzi, G., Sottero, B., & Poli, G. (2002). Oxidized products of cholesterol: dietary and metabolic origin, and proatherosclerotic effects. The Journal of Nutritional Biochemistry, 13(12): 700-710. doi: 10.1016/S0955-2863(02)00222-X
  47. Lercker, G., & Rodriguez-Estrada, M. T. (2000). Cholesterol oxidation: presence of 7-ketocholesterol in different food products. Journal of Food Composition and Analysis13(4): 625-631. doi: 10.1006/jfca.2000.0901
  48. Li, S. X., Cherian, G., Ahn, D. U., Hardin, R. T., & Sim, J. S. (1996). Storage, heating, and tocopherols affect cholesterol oxide formation in food oils. Journal of Agricultural and Food Chemistry44(12): 3830-3834. doi: 10.1021/jf950732o
  49. Lin, C. Y., & Morel, D. W. (1995). Distribution of oxysterols in human serum: characterization of 25-hydroxycholesterol association with serum albumin. The Journal of Nutritional Biochemistry6(11): 618-625. doi: 10.1016/0955-2863(95)00122-G
  50. Linseisen, J., & Wolfram, G. (1998). Absorption of cholesterol oxidation products from ordinary foodstuff in humans. Annals of Nutrition and Metabolism42(4): 221-230. doi: 10.1159/000012737
  51. Lütjohann, D., Papassotiropoulos, A., Björkhem, I., Locatelli, S., Bagli, M., Oehring, R. D., ..., Heun, R. (2000). Plasma 24S-hydroxycholesterol (cerebrosterol) is increased in Alzheimer and vascular demented patients. Journal of Lipid Research41(2): 195-198.
  52. Min, J. S., Lee, S. O., Khan, M. I., Yim, D. G., Seol, K. H., Lee, M., & Jo, C. (2015). Monitoring the formation of cholesterol oxidation products in model systems using response surface methodology. Lipids in Health and Disease14(1): 77. doi: 10.1186/s12944-015-0074-6.
  53. Nam, K. C., Du, M., Jo, C., & Ahn, D. U. (2001). Cholesterol oxidation products in irradiated raw meat with different packaging and storage time. Meat Science58(4): 431-435. doi: 10.1016/S0309-1740(01)00046-8
  54. Niki, E., Yoshida, Y., Saito, Y., & Noguchi, N. (2005). Lipid peroxidation: mechanisms, inhibition, and biological effects. Biochemical and Biophysical Research Communications338(1): 668-676. doi:10.1016/j.bbrc.2005.08.072
  55. Olkkonen, V. M. (2015). OSBP-related protein family in lipid transport over membrane contact sites. Lipid insights8: LPI-S31726. doi: 10.4137/LPI.S31726.
  56. Olkkonen, V. M., Béaslas, O., & Nissilä, E. (2012). Oxysterols and their cellular effectors. Biomolecules2(1): 76-103. doi: 10.3390/biom2010076.
  57. Orczewska-Dudek, S., Bederska-Łojewska, D., Pieszka, M., & Pietras, M. (2012). Cholesterol and lipid peroxides in animal products and health implications-a review. Annals of Animal Science12(1): 25-52. doi: 10.2478/v10220-012-0003-9
  58. Osada, K., Sasaki, E., & Sugano, M. (1994). Lymphatic absorption of oxidized cholesterol in rats. Lipids29(8): 555-559. doi: 10.1007/BF02536627
  59. Otaegui-Arrazola, A., Menendez-Carreño, M., Ansorena, D., & Astiasarán, I. (2010). Oxysterols: a world to explore. Food and Chemical Toxicology48(12): 3289-3303. doi: 10.1016/j.fct.2010.09.023.
  60. Paniangvait, P., King, A. J., Jones, A. D., & German, B. G. (1995). Cholesterol oxides in foods of animal origin. Journal of Food Science60(6): 1159-1174. doi: 10.1111/j.1365-2621.1995.tb04548.x.
  61. Papuc, C., Goran, G. V., Predescu, C. N., & Nicorescu, V. (2017). Mechanisms of oxidative processes in meat and toxicity induced by postprandial degradation products: a review. Comprehensive Reviews in Food Science and Food Safety16(1): 96-123. doi: 10.1111/1541-4337.12241
  62. Phillips, J. E., Geng, Y. J., & Mason, R. P. (2001). 7-Ketocholesterol forms crystalline domains in model membranes and murine aortic smooth muscle cells.  Atheroscleraosis, 159(1): 125-135. doi: 10.1016/S0021-9150(01)00504-4
  63. Pie, J. E., Spahis, K., & Seillan, C. (1991). Cholesterol oxidation in meat products during cooking and frozen storage. Journal of Agricultural and Food Chemistry39(2): 250-254. doi: 10.1021/jf00002a005
  64. Pommier, A. (2010). Rôle du cholestérol et des récepteurs nucléaires LXRs dans le cancer de la prostate. Thèse Doctorat. Université Blaise Pascal, Clermont-Ferrand II, 401p.
  65. Pordal, A. H., Hajmiresmail, S. J., Assadpoor-Piranfar, M., Hedayati, M., & Ajami, M. (2015). Plasma oxysterol level in patients with coronary artery stenosis and its changes in response to the treatment with atorvastatin. Medical journal of the Islamic Republic of Iran29: 192.
  66. Raza, S., Meyer, M., Schommer, J., Hammer, K. D., Guo, B., & Ghribi, O. (2016). 27-Hydroxycholesterol stimulates cell proliferation and resistance to docetaxel-induced apoptosis in prostate epithelial cells. Medical Oncology33(2): 12. doi: 10.1007/s12032-015-0725-5. 
  67. Rudzińska, M., Flaczyk, E., Amarowicz, R., Wąsowicz, E., & Korczak, J. (2007). Antioxidative effect of crackling hydrolysates during frozen storage of cooked pork meatballs. European Food Research and Technology224(3): 293. doi: 10.1007/s00217-006-0443-5
  68. Ryan, E., Chopra, J., McCarthy, F., Maguire, A. R., & O'brien, N. M. (2005). Qualitative and quantitative comparison of the cytotoxic and apoptotic potential of phytosterol oxidation products with their corresponding cholesterol oxidation products. British Journal of Nutrition94(3): 443-451. doi: 10.1079/BJN20051500
  69. Samouris, G., Kasapidou, E., Ioannidou, M., & Eleftheriadou, A. (2011). Changes in lipid oxidation levels and fatty acid composition in the meat of milk-fed lambs during refrigerated and frozen storage-Nutritional indices. Archiv für Lebensmittelhygiene62(6): 217-222. doi: 10.2376/0003-925X-62-217
  70. Savage, G. P., Dutta, P. C., & Rodriguez‐Estrada, M. T. (2002). Cholesterol oxides: their occurrence and methods to prevent their generation in foods. Asia Pacific Journal of Clinical Nutrition, 11(1): 72-78. doi: 10.1046/j.1440-6047.2002.00270.x
  71. Schweizer, R. A., Zurcher, M., Balazs, Z., Dick, B., & Odermatt, A. (2004). Rapid hepatic metabolism of 7-ketocholesterol by 11β-hydroxysteroid dehydrogenase type 1: Species-specific differences between the rat, human and hamster enzyme. Journal of Biological Chemistry. 39p. doi: 10.1074/jbc.M313615200
  72. Serra, A., Conte, G., Cappucci, A., Casarosa, L., & Mele, M. (2014). Cholesterol and fatty acids oxidation in meat from three muscles of Massese suckling lambs slaughtered at different weights. Italian Journal of Animal Science13(3): 3275. doi:10.4081/ijas.2014. 3275
  73. Serra, A., La Comba, F., Mele, M., & Secchiari, P. (2006). Influence of cooking on lipid oxidation of lamb meat. Progress In Nutrition8(1): 40-48.
  74. Shao, W., & Espenshade, P. J. (2012). Expanding roles for SREBP in metabolism. Cell Metabolism16(4): 414-419. doi: 10.1016/j.cmet.2012.09.002
  75. Shazamawati, Z. H., Alina, A. R., Mashitoh, A. S., & Juhana, M. T. (2013). Cholesterol oxidation products analysis in meat and poultry. Middle-East J. Sci. Res16: 67-78. doi: 10.5829/idosi.mejsr.2013.16.s.100212
  76. Shibata, N., & Glass, C. K. (2010). Macrophages, oxysterols and atherosclerosis. Circulation Journal74(10): 2045-2051.  doi: 10.1253/circj.CJ-10-0860
  77. Silva, J., Dasgupta, S., Wang, G., Krishnamurthy, K., Ritter, E., & Bieberich, E. (2006). Lipids isolated from bone induce the migration of human breast cancer cells. Journal of Lipid Research47(4): 724-733. doi: 10.1194/jlr.M500473-JLR200
  78. Smith, W. L., & Murphy, R. C. (2008). Oxidized lipids formed non-enzymatically by reactive oxygen species. Journal of Biological Chemistry, 283(23): 15513-15514. doi: 10.1074/jbc.R800006200
  79. Sottero, B., Gamba, P., Gargiulo, S., Leonarduzzi, G., & Poli, G. (2009). Cholesterol oxidation products and disease: an emerging topic of interest in medicinal chemistry. Current Medicinal Chemistry16(6): 685-705. doi: 10.2174/092986709787458353
  80. Souidi, M., Dubrac, S., Parquet, M., Volle, D. H., Lobaccaro, J. M. A., Mathé, D., ... Aigueperse, J. (2004). Les oxystérols: métabolisme, rôles biologiques et pathologies associées. Gastroentérologie clinique et biologique28(3) : 279-293. doi: 10.1016/S0399-8320(04)94919-6
  81. Sozen, E., Yazgan, B., Sahin, A., Ince, U., & Ozer, N. K. (2018). High cholesterol diet-induced changes in oxysterol and scavenger receptor levels in heart tissue. Oxidative Medicine and Cellular Longevity2018, 13. doi: 10.1155/2018/8520746
  82. Spann, N. J., & Glass, C. K. (2013). Sterols and oxysterols in immune cell function. Nature Immunology14(9): 893. doi: 10.1038/ni.2681
  83. Staprans, I., Pan, X. M., Rapp, J. H., & Feingold, K. R. (2003). Oxidized cholesterol in the diet is a source of oxidized lipoproteins in human serum. Journal of Lipid Research44(4): 705-715. doi: 10.1194/jlr.M200266-JLR200
  84. Thurner, K., Razzazi-Fazeli, E., Wagner, K. H., Elmadfa, I., & Luf, W. (2007). Determination of cholesterol oxidation products in raw and processed beef and pork preparations. European Food Research and Technology224(6): 797-800. doi: 10.1007 /s00217-006-0372-3
  85. Ubhayasekera, S.J.K.A. (2004). Cholesterol oxidation products: analytical methods and levels in sweets containing heated butter oil. Doctoral dissertation.
  86. Verleyen, T., Dutta, P. C., Verhé, R., Dewettinck, K., Huyghebaert, A., & De Greyt, W. (2003). Cholesterol oxidation in tallow during processing. Food Chemistry83(2): 185-188. doi: 10.1016/S0308-8146(03)00061-X
  87. Vicente, S. J., Sampaio, G. R., Ferrari, C. K., & Torres, E. A. (2012). Oxidation of cholesterol in foods and its importance for human health. Food Reviews International28(1): 47-70. doi:10.1080/87559129.2011.594972
  88. Vine, D. F., Mamo, J. C. L., Beilin, L. J., Mori, T. A., & Croft, K. D. (1998). Dietary oxysterols are incorporated in plasma triglyceride rich lipoproteins, increase their susceptibility to oxidation and increase aortic cholesterol concentration of rabbits. Journal of Lipid Research39(10): 1995-2004.
  89. Vladimiro, C., Casanova, O., Inchingolo, G., Banos Arias, S., & Estrada, R. (2016). Sex approach on lipid and cholesterol oxidation research in lamb meat. Doctoral dissertation. Bologna university.
  90. Warns, J., Marwarha, G., Freking, N., & Ghribi, O. (2018). 27-hydroxycholesterol decreases cell proliferation in colon cancer cell lines. Biochimie153: 171-180. doi: 10.1016/j.biochi. 2018.07.006.
  91. Wasowicz, E., Gramza, A., Hêœ, M., Jeleñ, H. H., Korczak, J., Maecka, M., ..., Zawirska-Wojtasiak, R. (2004). Oxidation of lipids in food. Pol J Food Nutr Sci13: 87-100.
  92. Xu, G., Guan, L., Sun, J., & Chen, Z. Y. (2009). Oxidation of cholesterol and β-sitosterol and prevention by natural antioxidants. Journal of Agricultural and Food Chemistry57(19): 9284-9292. doi: 10.1021/jf902552s.
  93. Xu, G., Sun, J., Liang, Y., Yang, C., & Chen, Z. Y. (2011). Interaction of fatty acids with oxidation of cholesterol and β-sitosterol. Food chemistry, 124(1): 162-170. doi:10.101 6/j.foodchem.2010.06.003
  94. Yamanaka, K., Urano, Y., Takabe, W., Saito, Y., & Noguchi, N. (2015). Induction of apoptosis and necroptosis by 24 (S)-hydroxycholesterol is dependent on activity of acyl-CoA: cholesterol acyltransferase 1. Cell Death & Disease, 5(1): e990. doi: 10.1038/cd dis.2013.524.
  95. Zhang, J., & Liu, Q. (2015). Cholesterol metabolism and homeostasis in the brain. Protein & Cell6(4): 254-264. doi: 10.1007/s13238-014-0131-3

Global Footprints