Chemical Indices and Antibacterial Properties of Some Essential Oils of Apiaceae and Lauraceae Spices in Southwest of Algeria

DOI: 10.18805/ajdfr.DR-130    | Article Id: DR-130 | Page : 105-113
Citation :- Chemical Indices and Antibacterial Properties of Some Essential Oils of Apiaceae and Lauraceae Spices in Southwest of Algeria.Asian Journal Of Dairy and Food Research.2019.(38):105-113
Dalila Razni, Linda Rouisset, Elhassan Benyagoub benyagoubelhassan@gmail.com
Address : Faculty of life and natural sciences, Department of Biology, Mohammed Tahri University of Bechar, Bechar, Algeria
Submitted Date : 7-05-2019
Accepted Date : 3-08-2019

Abstract

This study is a part of the valorization of extract from three most commonly used Algerian spices, namely; caraway and cumin seeds and cinnamon bark. On the one hand, it aims at characterizing the chemical indices of extracted essential oils and evaluating the antibacterial activity of each essential oil by titration and disc diffusion method respectively. On the other hand, it attempts at evaluating the combined action of essential oils against four reference pathogenic bacterial strains, namely Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, and Enterococcus faecalis by well and Chabbert-type diffusion method. The essential oils obtained by the hydrodistillation method have a relatively average extraction about 1.43, 2.3 and 2.5%, respectively for caraway, cumin, and cinnamon. The acid index indicates the behavior and amount of free acids present in the essential oil, in which the acid and saponification indices of cinnamon essential oil indicate a value of 4.48 and 168.56 respectively. It can also inform us about the susceptibility of the oil to undergo alterations. The antibacterial activity results showed that cinnamon essential oil (EO) proved to be the most active against the tested bacterial strains; caraway EO was active against Enterococcus faecalis, and the antibacterial action of cumin EO was the lowest. However, the association of the extracted essential oils has a higher synergistic effect than the independent effect of each essential oil, in which the MIC value found was estimated at 10 to 20 (V/V), 40 to 50 (V/V) and 50 to 70 (V/V) respectively for cinnamon, cumin and caraway. The obtained results show that the response to the antibacterial activity varies according to the plant species used and the extract tested alone or in combination.

Keywords

Antibacterial effects Bechar (Algeria) Chemical indices Essential oils Interaction Spices

References

  1. AFNOR (2000). Recueil de normes : Les huiles essentielles. Tome 2. Monographies relatives aux huiles essentielles. Association Française de Normalisation, Paris, 661-663.
  2. Aouf, C. (2002). Exaction et Evaluation des propriétés physico-chimiques, chromatographiques et spectroscopique des huiles essentielles de Carvi, Coriande et cumin. Mémoire de Magister en Chimie organique, Université Es-senia d’Oran (Algérie).
  3. Baaziz, M. (2018). Lipides- Détermination des indices de saponifications et indice d’acidité. Takwin forum. (Accessed on February 5, 2018). Available from: http://www.takween.com/techniques/lipides-indices.html.
  4. Balouiri, M., Sadiki, M. and Koraichi Ibnsouda, S. (2016). Methods for in vitro evaluating antimicrobial activity: A review. Journal of Pharmaceutical Analysis, 6(2): 71-79. https://doi.org/10.1016/j.jpha.2015.11.005.
  5. Baser., M.E., Friedman, J.M., Aeschliman. D., Joe. H., Wallace, A.J., Ramsden, R.T. and Evans, D.G.R. (2002). Predictors of the Risk of Mortality in Neurofibromatosis 2. The American Journal of Human Genetics. 71(4): 715-723. https://doi.org/10.1086/    34271.
  6. Benyagoub, E., Nabbou. N., Sirat. M. and Dahlis, Z. (2015). Antibacterial and phytochemical constituents of lavander extracts from the region of Tlemcen and their effect on some bacterial species responsible for food poisoning. Revue des Bioressources. 4(2): 18-28.
  7. Benyagoub, E. (2015). Lavandula angustifolia M, Propriétés phytochimiques et antibactériennes. Ed. Editions universitaires europeennes, Riga (Latvia), European Union ISBN-13: 978-3-8416-6806-6
  8. Bocianowski, J. (2012). A comparison of two methods to estimate additive-by-additive interaction of QTL effects by a simulation study. Journal of Theoretical Biology. 308: 20-24. https://doi.org/10.1016/j.jtbi.2012.05.018.
  9. Bourrel, C. (1993). Analyse chimique, activités biostatiques et antioxydantes d’extraits de plantes aromatiques sélectionnées. Thèse d    e Doctorat. Toulouse, INPT, France.
  10. Burt, S. (2004). Essential oils: a review. International Journal of Food Microbiology. 94(3): 223-253. https://doi.org/10.1016/    j.ijfoodmicro.2004.03.022.
  11. Careaga, M., Fernandez, E., Dorantes, L., Mota, L., Jaramillo, ME. and Hernandez-Sanchez, H. (2003). Antibacterial activity of Capsicum extract against Salmonella typhimurium and Pseudomonas aeruginosa inoculated in raw beef meat. International Journal of Food Microbiology. 83(3): 331-335.
  12. Clevenger, J.F. (1928). American pharmaceutical association « Apparatus for volatile oil determination, Description of New Type ». American Perfumer and Essential Oil Review: 467-503.
  13. Daguet, G.L. and Chabbert, Y.A. (1985). Techniques en bactériologie : Sérologie bactérienne, Antibiotiques en bactériologie médicale. Éditeur: Flammarion Médecine-Sciences, 244p.
  14. Dhandapani. S., Subramanian, V-R., Rajagopal, S. and Namasivayam, N. (2002). Hypolipidemic effect of Cuminum cyminum L. on alloxan-induced diabetic rats. Pharmacological Research. 46(3): 251-255. https://doi.org/10.1016/S1043-6618(02)00131-7
  15. Dipage, J.A. (2010). Détermination de l’Indice d’Acide des Huiles Essentielles. Sainte-Liberté. (Accessed on July 20th, 2018). Available from: http://sainte-liberte.over-blog.com/article-determination-de-l-indice-d-acide-des-huiles-essentielles-62900014.html
  16. Fabry, W., Okemo, PO. and Ansorg, R. (1998). Antibacterial activity of East African medicinal plants. Journal of Ethnopharmacology. 60(1): 79-84.
  17. Gachkar. L., Yadegari, D., Bagher Rezaei, M., Taghizadeh, M., Alipoor Astaneh, S. and Rasooli I. (2007). Chemical and biological characteristics of Cuminum cyminum and Rosmarinus officinalis essential oils. Food Chemistry. 102(3): 898-904.
  18. Gadisa, E., Weldearegay, G., Desta, K., Tsegaye, G., Hailu, S., Jote, K. and Takele, A. (2019). Combined antibacterial effect of essential oils from three most commonly used Ethiopian traditional medicinal plants on multidrug resistant bacteria. BMC Complementary and Alternative Medicine. 19:1-9. https://doi.org/10. 1186/s12906-019-2429-4
  19. Galambosi, B. and Peura, P. (1996). Agrobotanical features and oil content of wild and cultivated forms of caraway (Carum carvi L.). Journal of Essential Oil Research. 8(4): 389-397. https://doi.org/10.1080/10412905.1996.9700646
  20. Gonny, M., Bradesi, P. and Casanova, J. (2004). Identiûcation of the components of the essential oil from wild Corsican Daucus carota L. using 13C NMR spectroscopy. Flavour and Fragrance Journal. 19(5): 424-433.
  21. Hayes, A.J. and Markovic, B. (2002). Toxicity of Australian essential oil Backhousia citriodora (Lemon myrtle). Part 1. Antimicrobial activity and In Vitro cytotoxicity. Food and Chemical Toxicology Food Chem Toxicol. 40(4): 535-543.
  22. Hermal, C. (1993). Activité bactériostatique de sept émulsions d’huiles essentielles et de deux associations d’émulsions d’huiles essentielles. Mémoire de Magister, Université de Montpellier-France, 87p.
  23. Kalemba, D. and Kunicka, A. (2003). Antibacterial and antifungal properties of essential oils. Current Medicinal Chemistry. 10(10): 813-829.
  24. Lahlou, M. (2004). Methods to study the phytochemistry and bioactivity of essential oils. Phytotherapy Research. 18(6): 435-448. https://doi.org/10.1002/ptr.1465.
  25. Manion, C.R. and Widder, R.M. (2017). Essentials of essential oils. American Journal of Health-System Pharmacy. 74(9): 153-162. https://doi.org/10.2146/ajhp151043.
  26. Marzouk, Z., Naffati, A., Marzouk, A., Charaief, K., Chekir, F., Ghedira, L. and Boukef, K. (2006). Chemical composition and bacterial and antimutagenic activity of Tunisian Rosmarinus officialis L. Journal of Food, Agriculture and Environment. 4(3): 61-65. 
  27. Naeini, A.R., Nazeri, M. and Shokri, H. (2011). Antifungal activity of Zataria multiflora, Pelargonium graveolens and Cuminum cyminum essential oils towards three species of Malassezia isolated from patients with Pityriasis versicolor. Journal de Mycologie Médicale. 21(2): 87-91.
  28. Naik, G., Bhandrai, U., Gwari, G. and Lohani, H. (2017). Evaluation of essential oil of Cymbopogon distans and Cinnamomum tamata against plant pathogenic fungi. Indian Journal of Agricultural Research. 51(2): 191-193. https://doi.org/10.18805/ijare.v0i    OF.7641.
  29. National Committee for Clinical Laboratory Standards (NCCLS) (2017). Performance Standards for Antimicrobial Susceptibility Testing. 27th ed. CLSI supplement M100. Wayne, PA: Clinical and Laboratory Standards Institute.
  30. NF ISO 1242 (1999). Huiles essentielles-Détermination de l’indice d’acide. Organisation internationale de normalisation. Available from: https://www.boutique.afnor.org/norme/nf-iso-1242/huiles-essentielles-determination-de-l-indice-d-acide/article/757173/    fa046371.
  31. NF EN ISO 3657 (2013). Corps gras d’origine animale et végétale-Détermination de l’indice de saponification. Available from: https:/    /www.boutique.afnor.org/norme/nf-en-iso-3657/corps-gras-d-origines-animale-et-vegetale-determination-de-l-indice-de-saponification/article/ 805204/fa175864.
  32. NF ISO 709 (2002). Huiles essentielles-Détermination de l’indice d’ester. Available from: https://www.boutique.afnor.org/norme/nf-iso-709/huiles-essentielles determination-de-l-indice-dester/ article/784466/fa103723.
  33. Oussalah, M., Caillet, S. and Lacroix, M. (2006). Mechanism of Action of Spanish oregano, Chinese cinnamon and savory essential oils on Escherichia coli O157:H7 and Listeria monocytogenes. Journal of food Protection. 69(5): 1046-1055. 
  34. Sacchetti, G., Maietti, S., Muzzoli, M., Scaglianti, M., Mansredini, S., Radice, M. and Irimi, R. (2005). Comparative evaluation of 11 essentials oils of different origin as functional antioxydants, antiradicals and antimicrobial in food. Food Chemistry. 91(4): 621-632. https://doi.org/ 10.1016/j.foodchem.2004.06.031
  35. Saiedirad, M.H., Tabatabaeefar, A., Borghei, A., Mirsalehi, M., Badii, F. and Varnamkhasti, G. (2008). Effects of moisture content, seed size, loading rate and seed orientation on force and energy required for fracturing cumin seed (Cuminum cyminum Linn.) under quasi-static loading. Journal of Food Engineering. 86(4): 565-572.
  36. Soussy, C.J., Carret, G., Cavallo, JD., Chardon, H., Chidiac, C., Choutet, et al. (2000). Antibiogram Committee of the French Microbiology Society. Report 2000-2001. Phatologie Biologie. 48(9): 832-871.
  37. Vaubourdolle, M. (2007). Biochimie, hématologie. Wolters Kluwer, Paris-France.
  38. Taleb-Toudert, K. (2015). Extraction et caractérisation des huiles essentielles de dix plantes aromatiques provenant de la région Kabylie. Thèse de Doctorat en biologie animale et végétale, Université Mammeri MOULOUD de Tizi-Ouzou (Algérie).
  39. Wiegand, I., Hilpert, K. and Hancock, R.E. (2008). Agar and broth dilution methods to determine the minimal inhibitory concentration (MIC) of antimicrobial substances. Nature Protocols. 3(2): 163-175. https://doi.org/10.1038/nprot.2007.521
  40. Yesil-Celiktas, O., Nartop, P., Gurel, A., Bedir, E. and Vardar-Sukan, F. (2007). Determination of phenolic content and antioxidant activity of extracts obtained from Rosmarinus officinalis’ calli. Journal of Plant Physiology. 164(11): 1536-1542. https://doi.org/10.1016/j.jplph.2007.05.013.

Global Footprints