Effect of different drying and grinding methods on biochemical properties of sweet orange peel powder

DOI: 10.18805/ajdfr.v36i03.8975    | Article Id: DR-1238 | Page : 260-263
Citation :- Effect of different drying and grinding methods on biochemical properties of sweet orange peel powder.Asian Journal Of Dairy and Food Research.2017.(36):260-263
K.B. Sankalpa, C.T. Ramachandra, B.L. Dinesha, Uday Kumar Nidoni, Sharanagouda Hiregoudar and R.V. Beladhadi sankalpabgowda.27@gmail.com
Address : Department of Processing and Food Engineering, College of Agricultural Engineering, University of Agricultural Sciences, Raichur-584 104, Karnataka, India.
Submitted Date : 27-03-2017
Accepted Date : 20-05-2017

Abstract

Sweet orange (Citrus sinensis Osbeck) belongs to sub family Aurantoideae which is categorised under family Rutaceae. Peel is the main by-product obtained from sweet orange fruit juice processing industry. Peel is rich in many bioactive component, so to utilize this peel for industrial purpose it need to cover to stable form.  So in present study sweet orange peel is dried in three drying technique: solar tunnel drying, hot air drying and dehumidified air drying and ground with three different grinding methods: hammer mill grinding at ambient temperature, hammer mill grinding with water cooling and hammer mill grinding with liquid nitrogen cooling. Ground sweet orange peel powder was examined for functional properties. Among nine combinations, dehumidified air dried and liquid nitrogen (LN2) cooled ground sample showed significantly good functional properties such as ascorbic acid (40.00 mg.100g-1), phenols (2.23 mg.g-1), total carotenoids (0.28 mg.g-1), total flavonoids (33.76 mg.g-1), radical scavenging activity (75.59 %), pH (6.26) and water activity (0.35).

Keywords

Biochemical properties Dehumidified air drying LN2 cooling grinding Sweet orange peel powder.

References

  1. Agocs, A., Nagy, V., Szabo, Z., Mark, Z., Ohmacht, R. and Deli, J. (2007). Comparative study on the carotenoid composition of the peel and the pulp of different citrus species. Innov. Food Sci. Emerg. Technol. 8: 390-394.
  2. Ahmad, J. and Langrish, T. A. G. (2012). Optimisation of total phenolic acids extraction from mandarin peels using microwave energy: The importance of the Maillard reaction. J. Food Eng. 109: 162-174.
  3. Barros, H. R. M., Ferreira, T. A. P. C. and Genovese, M. I. (2012). Antioxidant capacity and mineral content of pulp and peel from commercial cultivars of citrus from Brazil. J. Food Chem. 134: 1892-1898.
  4. Chantaro, P., Devahastin, S. and Chiewchan, N. (2008). Production of antioxidant high dietary fiber powder from carrot peels. Food Sci. Technol. 41: 1987-1994.
  5. Chen, Z. T, Chu, H. L., Chyau, C. C., Chu, C. C. and Duh, P. D. (2012). Protective effects of sweet orange (Citrus sinensis) peel and their bioactive compounds on oxidative stress. J. Food Chem. 135: 2119-2127.
  6. Crizel, T. M., Jablonski, A., Rios, A. O., Rech, R. and Flores, S. H. (2013). Dietary fiber from orange by-products as a potential fat replacer. Food Sci. Technol. 53: 9-14.
  7. Djilas, S. (2009). By-products of fruits processing as a source of phytochemicals- A review. Chem. Ind. Chem. Eng. Q. 15: 191-202.
  8. El-aal, H. A. A. and Halaweish, F. T. (2009). Food preservative activity of phenolic compounds in orange peel extracts (Citrus sinensis L.). Scientific Papers, Animal Sci. Series. 53: 233-240.
  9. Esfahani, J. A., Majdi, H. and Barati, E. (2014). Analytical two-dimensional analysis of the transport phenomena occurring during convective drying: Apple slices. J. Food Eng. 123: 87-93.
  10. Garau, M. C., Simal, S., Rossello, C. and Femenia, A. (2007). Effect of air-drying temperature on physico-chemical properties of dietary fibre and antioxidant capacity of orange (Citrus aurantium v. Canoneta) by-products. J. Food Chem. 104: 1014-1024.
  11. Ghanem, N., Mihoubi, D., Kechaou, N. and Mihoubi, N. B. (2012). Microwave dehydration of three citrus peel cultivars: Effect on water and oil retention capacities, colour, shrinkage and total phenols content. J. Ind. Crops Prod. 40: 167-177.
  12. Kaya, A., Aydýna, O. and Kolayli, S. (2010). Effect of different drying conditions on the vitamin C (ascorbic acid) content of Hayward kiwifruits (Actinidia deliciosa Planch). Food Bioprod. Process. 88: 165-173.
  13. Khan, M. K., Vian, M. A., Tixier, A. F., Dangles, O. and Chemat, F. (2010). Ultrasound-assisted extraction of polyphenols (flavanone glycosides) from orange (Citrus sinensis L.) peel. J. Food Chem. 119: 851-858.
  14. Kumar, A. K., Narayani, A., Subanthini, D. and Jayakumar, M. (2011). Antimicrobial activity and phytochemical analysis of citrus fruit peels-utilization of fruit waste. J. Sci. Technol. 3: 5414-5421.
  15. Lario, Y., Sendra, E., Perez, G. J., Fuentes, C., Barbera, S. E., Lopez, F. J. and Perez, A. A. J. (2004). Preparation of high dietary fiber powder from lemon juice by-products. Innov. Food Sci. Emerg. Technol. 5: 113-117.
  16. Larrauri, J. A. (1999). New approaches in the preparation of high dietary fibre powder from fruit by-products- A review. Trends Food Sci. Tech. 10: 3-8.
  17. Larrauri, J., Moreno, C. S. and Calixto, F. S. (1998). Effect of temperature on the free radical scavenging capacity of extracts from red and white grape pomace peels. J. Agric. Food Chem. 46: 2694-2697.
  18. Larrauri, Rupbrez, P., Bravo, L. and Calixto, S. F. (1997). High dietary fibre peels: associated powders from orange and lime polyphenols and antioxidant capacity. Food Res. Int. 29: 757-762. 
  19. Li, B. B., Smith, B. and Hossain, M. (2006). Extraction of phenolics from citrus peels. I. Solvent extraction method. Sep. Purif. Technol. 48: 182-188.
  20. Lopez, F. J., Gines, J. M., Carbonell, L., Sendra, E., Barbera, E. and Alvarez, J. (2004). Application of functional citrus by-products to meat products. Trends Food Sci. Tech. 15: 176-185.
  21. Marin, F. R., Rivas, C. S., Garcia, O. B., Castillo, L. and Alvarez, L. P. (2007). By-products from different citrus processes as a source of customized functional fibres. J. Food Chem. 100: 736-741.
  22. Peerajith, P., Chiewchan, N. Devahastin, S. (2012). Effects of pretreatment methods on health-related functional properties of high dietary fibre powder from lime residues. J. Food Chem. 132: 1891-1898. 
  23. Reddy, R. S., Ramachandra, C. T., Hiregoudar, S., Nidoni, U., Ram, J. and Kammar, M. (2014). Influence of processing conditions on functional and reconstitution properties of milk powder made from Osmanabadi goat milk by spray drying. Small Ruminant Research, http://dx.doi.org/10.1016/j.smallrumres.2014.01.013.
  24. Sadashivam, S. and Manickam, A. (1992). Biochemical Methods for Agricultural Sciences. Wiley Eastern Ltd., New Delhi, pp 199-201.
  25. Singh, K. K. and Goswami, T. K, (1999). Design of cryogenic grinding system for spices. J. Food Eng. 39: 359-368.
  26. Sogi, D. S., Siddiq, D. H., Greiby, M., Dolan, I. and Kirk, D. (2013). Total phenolics, antioxidant activity, and functional properties of Tommy Atkins’ mango peel and kernel as affected by drying methods. J. Food Chem. 141: 2649-55.
  27. Wang, Y. C., Chuang, Y. C. and Ku, Y. H. (2007). Quantitation of bioactive compounds in citrus fruits cultivated in Taiwan. J. Food Chem. 102: 1163-1171. 

Global Footprints