Loading...

Nutritional and Bioactive Properties of Rubus ulmifolius Schott (Blackberry): A Review

DOI: 10.18805/ajdfr.DR-1920    | Article Id: DR-1920 | Page : 249-255
Citation :- Nutritional and Bioactive Properties of Rubus ulmifolius Schott (Blackberry): A Review.Asian Journal of Dairy and Food Research.2022.(41):249-255
Ekta Singh Chauhan, Urvashi Chauhan ektasinghbu@gmail.com
Address : Department of Food Science and Nutrition, Banasthali Vidyapith, Tonk-304 022, Rajasthan, India.
Submitted Date : 22-03-2022
Accepted Date : 26-05-2022

Abstract

Rubus ulmifolius Schott, commonly known as blackberry, has been widely used as a food source as well as in jams, juices, etc. for its purported medical benefits. It has also been extensively investigated for its nutritional and bioactive constituents, which might be responsible for these benefits. In general, the plant is rich in carbohydrates, lipids, vitamins and minerals. The primary carbohydrates are glucose and sucrose; while ascorbic acid has been reported to be the primary vitamin, contributing to the acidic nature of the fruits. The bioactive compounds identified in the various plant parts include polyphenols such as phenolic acids, flavonoids and anthocyanins and other chemicals in lesser amounts. The antioxidant and antimicrobial properties of various parts of the plant have been investigated. The antioxidant effect has been attributed both to the presence of ascorbic acid as well as the other polyphenolic compounds. An antimicrobial activity has also been reported against the common human pathogens. This review summarizes the prevailing literature on the nutritional and bioactive composition of the plant and the evidence for its antioxidant and antimicrobial properties. This review summarizes the prevailing literature on the nutritional and bioactive composition of the plant and the evidence for its antioxidant and antimicrobial properties.

Keywords

​Antimicrobial Antioxidant Blackberry Nutritional composition Polyphenolic content

References

  1. Ahmad, M., Masood, S., Sultana, S., Hadda, T.B., Bader, A. and Zafar, M. (2015). Antioxidant and nutraceutical value of wild medicinal Rubus berries. Pakistan Journal of Pharmaceutical Sciences. 28(1): 241-247.
  2. Ahmad, N., Anwar, S., Fazal, H. and Abbasi, B.H. (2013). Medicinal plants used in indigenous herapy by people of Madyan Valley in district Swat, Pakistan. Int. J. Med. Aromat Plants. 3(1): 47-54.
  3. Akkari, H., Hajaji, S., B’chir, F., Rekik, M. and Gharbi, M. (2016). Correlation of polyphenolic content with radical- scavenging capacity and anthelmintic effects of Rubus ulmifolius (Rosaceae) against Haemonchus contortus. Veterinary Parasitology. 221: 46-53.
  4. Ali, N., Shah, S.W.A., Shah, I., Ahmed, G., Ghias, M. and Khan, I. (2011). Cytotoxic and anthelmintic potential of crude saponins isolated from Achillea wilhelmsii C. Koch and Teucrium stocksianum boiss. BMC Complementary and Alternative Medicine. 11(1): 1-7.
  5. Ali, N., Shaoib, M., Shah, S.W.A., Shah, I. and Shuaib, M. (2017). Pharmacological profile of the aerial parts of Rubus ulmifolius Schott. BMC Complementary and Alternative Medicine. 17(1): 1-7.
  6. Amjad, L. and Shafighi, M. (2013). Evaluation of antioxidant activity, phenolic and flavonoid content in Punica granatum var. Isfahan Malas flowers. International Journal of Agriculture and Crop Sciences. 5(10): 1133.
  7. Bandeira Reidel, R.V., Melai, B., Cioni, P., Flamini, G. and Pistelli, L. (2016). Aroma profile of Rubus ulmifolius flowers and fruits during different ontogenetic phases. Chemistry and Biodiversity. 13(12): 1776-1784.
  8. Barros, L., Oliveira, S., Carvalho, A.M. and Ferreira, I.C. (2010). In vitro antioxidant properties and characterization in nutrients and phytochemicals of six medicinal plants from the Portuguese folk medicine. Industrial Crops and Products. 32(3): 572-579.
  9. Caidan, R., Cairang, L., Pengcuo, J. and Tong, L. (2015). Comparison of compounds of three Rubus species and their antioxidant activity. Drug Discoveries and Therapeutics. 9(6): 391-396.
  10. Candela, R.G., Lazzara, G., Piacente, S., Bruno, M., Cavallaro, G. and Badalamenti, N. (2021). Conversion of Organic Dyes into Pigments: Extraction of Flavonoids from Blackberries (Rubus ulmifolius) and Stabilization. Molecules. 26(20): 6278.
  11. Contessa, C., Mellano, M.G., Beccaro, G.L., Giusiano, A. and Botta, R. (2013). Total antioxidant capacity and total phenolic and anthocyanin contents in fruit species grown in Northwest Italy. Scientia Horticulturae. 160: 351-357.
  12. D’Agostino, M.F., Sanz, J., Sanz, M.L., Giuffrè, A.M., Sicari, V. and Soria, A.C. (2015). Optimization of a solid-phase microextraction method for the gas chromatography- mass spectrometry analysis of blackberry (Rubus ulmifolius Schott) fruit volatiles. Food Chemistry. 178: 10-17.
  13. da Silva, L.P., Pereira, E., Pires, T.C., Alves, M.J., Pereira O.R., Barros, L. and Ferreira, I.C. (2019). Rubus ulmifolius Schott fruits: A detailed study of its nutritional, chemical and bioactive properties. Food Research International. 119: 34-43.
  14. Della Betta, F., Nehring, P., Seraglio, S.K.T., Schulz, M., Valese, A.C., Daguer, H., Gonzaga, L.V., Fett, R. and Costa, A.C.O. (2018). Phenolic compounds determined by LC- MS/MS and in vitro antioxidant capacity of Brazilian fruits in two edible ripening stages. Plant Foods for Human Nutrition. 73(4): 302-307.
  15. Faniadis, D., Drogoudi, P.D. and Vasilakakis, M. (2010). Effects of cultivar, orchard elevation and storage on fruit quality characters of sweet cherry (Prunus avium L.). Scientia Horticulturae. 125(3): 301-304.
  16. Fontaine, B.M., Nelson, K., Lyles, J.T., Jariwala, P.B., García- Rodriguez, J.M., Quave, C.L. and Weinert, E.E. (2017). Identification of ellagic acid rhamnoside as a bioactive component of a complex botanical extract with anti-biofilm activity. Frontiers in Microbiology. 8: 496.
  17. Fuhrman, J. (2018). The hidden dangers of fast and processed food. American Journal of Lifestyle Medicine. 12(5): 375-381.
  18. Hajaji, S., Jabri, M.A., Sifaoui, I., López-Arencibia, A., Reyes-Batlle, M., B’chir, F., Valladares, B., Pinero, J.E., Lorenzo-Morales, J. and Akkari, H. (2017). Amoebicidal, antimicrobial and in vitro ROS scavenging activities of Tunisian Rubus ulmifolius Schott, methanolic extract. Experimental Parasitology. 183: 224-230.
  19. Krauze-Baranowska, M., Głód, D., Kula, M., Majdan, M., Hałasa, R., Matkowski, A., Kozłowska, W. and Kawiak, A. (2014). Chemical composition and biological activity of Rubus idaeus shoots-a traditional herbal remedy of Eastern Europe. BMC Complementary and Alternative Medicine. 14(1): 1-12.
  20. Lee, J. (2015). Sorbitol, Rubus fruit and misconception. Food Chemistry. 166: 616-622.
  21. Lemus, I., Garcia, R., Delvillar, E. and Knop, G. (1999). Hypoglycaemic activity of four plants used in Chilean popular medicine. Phytotherapy Research: An International Journal Devoted to Pharmacological and Toxicological Evaluation of Natural Product Derivatives. 13(2): 91-94.
  22. Manganelli, R.U. and Tomei, P.E. (1999). Ethnopharmacobotanical studies of the Tuscan Archipelago. Journal of Ethnopharmacology. 65(3): 181-202.
  23. Martins, A., Barros, L., Carvalho, A.M., Santos-Buelga, C., Fernandes, I.P., Barreiro, F. and Ferreira, I.C. (2014). Phenolic extracts of Rubus ulmifolius Schott flowers: Characterization, microencapsulation and incorporation into yogurts as nutraceutical sources. Food and Function. 5(6): 1091-1100.
  24. Mazur, S.P., Nes, A., Wold, A.B., Remberg, S.F. and Aaby, K. (2014). Quality and chemical composition of ten red raspberry (Rubus idaeus L.) genotypes during three harvest seasons. Food Chemistry. 160: 233-240.
  25. Mikulic Petkovsek, M., Schmitzer, V., Slatnar, A., Stampar, F. and Veberic, R. (2012). Composition of sugars, organic acids and total phenolics in 25 wild or cultivated berry species. Journal of Food Science. 77(10): C1064-C1070.
  26. Morales, P., Ferreira, I.C., Carvalho, A.M., Fernández Ruiz, V., Sánchez Mata, M.C., Cámara, M., Morales, R. and Tardío, J. (2013). Wild edible fruits as a potential source of phytochemicals with capacity to inhibit lipid peroxidation. European Journal of Lipid Science and Technology. 115(2): 176-185.
  27. Moscato, E.M. and Machin, J.E. (2018). Mother natural: Motivations and associations for consuming natural foods. Appetite. 121: 18-28.
  28. Moubarac, J.C., Batal, M., Louzada, M.L., Steele, E.M. and Monteiro, C.A. (2017). Consumption of ultra-processed foods predicts diet quality in Canada. Appetite. 108: 512-520.
  29. Murray, C.J., Abraham, J., Ali, M.K., Alvarado, M., Atkinson, C., Baddour, L.M., Bartels, D.H., Benjamin, E.J., Bhalla, K., Birbeck, G. and Lopez, A.D. (2013). The state of US health, 1990-2010: Burden of diseases, injuries and risk factors. Jama. 310(6): 591-606.
  30. Oszmiański, J., Nowicka, P., Teleszko, M., Wojdyło, A., Cebulak, T. and Oklejewicz, K. (2015). Analysis of phenolic compounds and antioxidant activity in wild blackberry fruits. International Journal of Molecular Sciences. 16(7): 14540-14553.
  31. Peano, C., Girgenti, V., Baudino, C. and Giuggioli, N.R. (2017). Blueberry supply chain in Italy: Management, innovation and sustainability. Sustainability. 9(2): 261.
  32. Quave, C.L., Estévez-Carmona, M., Compadre, C.M., Hobby, G., Hendrickson, H., Beenken, K.E. and Smeltzer, M.S. (2012). Ellagic acid derivatives from Rubus ulmifolius inhibit Staphylococcus aureus biofilm formation and improve response to antibiotics. PloS one. 7(1): e28737.
  33. Ruiz-Rodríguez, B.M., Sánchez-Moreno, C., De Ancos, B., de Cortes Sánchez-Mata, M., Fernández-Ruiz, V., Cámara, M. and Tardío, J. (2014). Wild Arbutus unedo L. and Rubus ulmifolius Schott fruits are underutilized sources of valuable bioactive compounds with antioxidant capacity. Fruits. 69(6): 435-448.
  34. Rust, G., Ye, J., Baltrus, P., Daniels, E., Adesunloye, B. and Fryer, G.E. (2008). Practical barriers to timely primary care access: Impact on adult use of emergency department services. Archives of Internal Medicine. 168(15): 1705-1710.
  35. Samaniego, I., Brito, B., Viera, W., Cabrera, A., Llerena, W., Kannangara, T., Vilcacundo, R., Angós, I. and Carrillo, W. (2020). Influence of the maturity stage on the phytochemical composition and the antioxidant activity of four andean blackberry cultivars (Rubus glaucus Benth) from ecuador. Plants. 9(8): 1027.
  36. Schulz, M., Seraglio, S.K.T., Della Betta, F., Nehring, P., Valese, A.C., Daguer, H., Gonzaga, L.V., Costa, A.C. and Fett, R. (2019). Blackberry (Rubus ulmifolius Schott): Chemical composition, phenolic compounds and antioxidant capacity in two edible stages. Food Research International. 122: 627-634.
  37. Schulz, M. and Chim, J.F. (2019). Nutritional and bioactive value of Rubus berries. Food Bioscience. 31: 100438.
  38. Skrovankova, S., Sumczynski, D., Mlcek, J., Jurikova, T. and Sochor, J. (2015). Bioactive compounds and antioxidant activity in different types of berries. International Journal of Molecular Sciences. 16(10): 24673-24706.
  39. Sochor, M., Trávníèek, B. and Manning, J.C. (2018). Biosystematic revision of the native and naturalised species of Rubus L. (Rosaceae) in the Cape Floristic Region, South Africa. South African Journal of Botany. 118: 241-259.
  40. Staszowska-Karkut, M. and Materska, M. (2020). Phenolic composition, mineral content and beneficial bioactivities of leaf extracts from black currant (Ribes nigrum L.), raspberry (Rubus idaeus) and aronia (Aronia melanocarpa). Nutrients. 12(2): 463
  41. Tabarki, S., Aouadhi, C., Mechergui, K., Hammi, K.M., Ksouri, R., Raies, A. and Toumi, L. (2017). Comparison of phytochemical composition and biological activities of Rubus ulmifolius extracts originating from four regions of Tunisia. Chemistry and Biodiversity. 14(1): e1600168.
  42. Talekar, S.J., Chochua, S., Nelson, K., Klugman, K.P., Quave, C.L. and Vidal, J.E. (2014). 220D-F2 from Rubus ulmifolius kills Streptococcus pneumoniae planktonic cells and pneumococcal biofilms. PLoS One. 9(5): e97314.
  43. Uhler, B. and Yang, Z. (2018). Rebaudioside A and other unreported steviol glycoside isomers found in the sweet tea (Rubus suavissimis) leaf. Phytochemistry Letters. 28: 93-97.
  44. Wajs Bonikowska, A., Stobiecka, A., Bonikowski, R., Krajewska, A., Sikora, M. and Kula, J. (2017). A comparative study on composition and antioxidant activities of supercritical carbon dioxide, hexane and ethanol extracts from blackberry (Rubus fruticosus) growing in Poland. Journal of the Science of Food and Agriculture. 97(11): 3576- 3583.
  45. Yang, J.Y., Pak, J.H. and Kim, S.C. (2018). The complete plastome sequence of Rubus takesimensis endemic to Ulleung Island, Korea: Insights into molecular evolution of anagenetically derived species in Rubus (Rosaceae). Gene. 668: 221-228.

Global Footprints