Influence of Soil-application of Fish-protein Hydrolysate Liquid on Growth and Yield of Spinach (Spinacia oleracea L.)

DOI: 10.18805/ajdfr.DR-1544    | Article Id: DR-1544 | Page : 69-75
Citation :- Influence of Soil-application of Fish-protein Hydrolysate Liquid on Growth and Yield of Spinach (Spinacia oleracea L.).Asian Journal of Dairy and Food Research.2021.(40):69-75
Sheetal P. Dewang, Usha Devi C. sheetudewang@gmail.com
Address : Department of Food and Nutrition, VHD Institute of Home Science, Bangalore-560 001, Karnataka, India.
Submitted Date : 16-06-2020
Accepted Date : 2-12-2020


Background: Organic inputs, especially biostimulants, are gaining immense importance in enhancing crop yields. In the present study, the effect of soil-application of fish-protein hydrolysate (FPH) on the growth and yield of spinach was evaluated. The effect of various doses on the yield and correlation of root growth with yield was attempted to establish. 
Methods: In the current experiment, spinach was grown in growing pots. Four different concentrations of the FPH liquid viz. 0.5 ml, 2 ml, 5 ml and 10 ml per plant were applied to each plant through soil application at the frequency of 8 days. 
Result: The study revealed that amongst the various tested doses of 0.5 ml, 2 ml, 5 ml and 10 ml, the highest yield was observed with a 2 ml dose. Compared to untreated control plants, about a 40% increase in the yield was observed in the treatment with a 2 ml dose. The higher yield was associated with better root development. The higher doses of 5 ml and 10 ml did not result in a proportional increase in yields. On the contrary, these higher doses resulted in an adverse effect on the growth of roots and yield. So, the present study demonstrated the utility of FPH in increasing the yield of spinach in organic farming at the experimental level.     


Amino acid Biostimulant Fish-Protein Hydrolysate Spinach yield


  1. Anjali, Sharma, P. and Nagpal, S. (2019). Effect of Liquid and Charcoal Based Consortium Biofertilizers Amended with Additives on Growth and Yield in Chickpea (Cicer arietinum L.). Legume Research-An International Journal. LR-4131, 1–12, https://doi.org/10.18805/LR-4131.
  2. Bahadur, L. and Tiwari, D.D. (2014). Nutrient management in mung bean (Vigna radiata L.) through sulphur and biofertilizers. Legume Research. 37(2): 180-187, https://doi.org/10.5958 /j.0976-0571.37.2.027.
  3. Balakumbahan, R. and Kavitha, M.P. (2019). Effect of biostimulants on leaf yield and quality of annual moringa (Moringa oleifera. Lam) Var. PKM - 1. Indian Journal of Agricultural Research. 53(5): 566-571, https://doi.org/10.18805/IJARe.A-5086.
  4. Bulgari, R., Franzoni, G. and Ferrante, A. (2019). Biostimulants application in horticultural crops under abiotic stress conditions. Agronomy 9(6): https://doi.org/10.3390/agronomy9060306.
  5. Carillo, P., Colla, G., Fusco, G.M., Dell’Aversana, E., El-Nakhel, C., Giordano, M., Pannico, A., Cozzolino, E., Mori, M. Reynaud, H., Kyriacou, M.C., Cardarelli, M. and Rouphael, Y. (2019). Morphological and physiological responses induced by protein hydrolysate-based biostimulant and nitrogen rates in greenhouse spinach. Agronomy. 9(8): 1-22, https://doi.org/10.3390/agronomy9080450.
  6. Carson, R. (1962). Silent spring. 40th anniversary edition. Boston/ : Houghton Mifflin, (2002). ©1962.
  7. Caruso, G., De Pascale, S., Cozzolino, E., Giordano, M., El-Nakhel, C., Cuciniello, A.; Cenvinzo, V.; Colla, G. and Rouphael, Y. (2019). Protein hydrolysate or plant extract-based biostimulants enhanced yield and quality performances of greenhouse perennial wall rocket grown in different seasons. Plants. 8(7): 1-18: https://doi.org/10.3390/plants 8070208.
  8. Cerdán, M., Sánchez-Sánchez, A., Oliver, M., Juárez, M. and Sánchez-Andreu, J.J. (2009). Effect of foliar and root applications of amino acids on iron uptake by tomato plants. Acta Horticulturae. 830: 481-488,https://doi.org/10.17660/ActaHortic.2009.830.68.
  9. Cho, M.J., Howard, L.R., Prior, R.L. and Morelock, T. (2008). Flavonoid content and antioxidant capacity of spinach genotypes determined by high-performance liquid chromatography/mass spectrometry. Journal of the Science of Food and Agriculture. 88(6): 1099-1106, https://doi.org/10.1002/jsfa.3206.
  10. Colla, G., Rouphael, Y., Canaguier, R., Svecova, E. and Cardarelli, M. (2014). Biostimulant action of a plant-derived protein hydrolysate produced through enzymatic hydrolysis. Frontiers in Plant Science. 5(SEP): 1-6: https://doi.org/10.3389/fpls.2014.00448.
  11. Cristiano, G., Pallozzi, E., Conversa, G., Tufarelli, V. and De Lucia, B. (2018). Effects of an animal-derived biostimulant on the growth and physiological parameters of potted snapdragon (Antirrhinummajus L.). Frontiers in Plant Science. 9(June): 1-12, https://doi.org/10.3389/fpls. 2018.00861.
  12. Drobek, M., Fr¹c, M. and Cybulska, J. (2019). Plant biostimulants: Importance of the quality and yield of horticultural crops and the improvement of plant tolerance to abiotic stress-    a review. Agronomy. 9(6): https://doi.org/10.3390/agronomy9060335.
  13. Ertani, A., Cavani, L., Pizzeghello, D., Brandellero, E., Altissimo, A., Ciavatta, C. and Nardi, S. (2009). Biostimulant activity of two protein hydrolyzates in the growth and nitrogen metabolism of maize seedlings. Journal of Plant Nutrition and Soil Science. 172(2): 237-244, https://doi.org/10.1002 /jpln.200800174.
  14. Ertani, A., Francioso, O., Ferrari, E., Schiavon, M. and Nardi, S. (2018). Spectroscopic-chemical fingerprint and biostimulant activity of a protein-based product in solid form. Molecules. 23(5): 1-16,https://doi.org/10.3390/molecules23051031.
  15. Ertani, A., Pizzeghello, D., Francioso, O., Sambo, P., Sanchez-Cortes, S. and Nardi, S. (2014). (Capsicum chinensis L.) growth and nutraceutical properties are enhanced by biostimulants in a long-term period: Chemical and metabolomic approaches. Frontiers in Plant Science. 5(AUG): 1-12, https://doi.org/10.3389/fpls.2014.00375.
  16. Ertani, A., Sambo, P., Nicoletto, C., Santagata, S., Schiavon, M. and Nardi, S. (2015). The use of organic biostimulants in hot pepper plants to help low input sustainable agriculture. Chemical and Biological Technologies in Agriculture. 2(1): https://doi.org/10.1186/s40538-015-0039-z.
  17. Fan, D., Hodges, D.M., Critchley, A.T. and Prithiviraj, B. (2013). A Commercial Extract of Brown Macroalga (Ascophyllum nodosum) Affects Yield and the Nutritional Quality of Spinach In Vitro. Communications in Soil Science and Plant Analysis. 44(12): 1873-1884, https://doi.org/10.1080/00103624.2013.790404.
  18. Godara, A.S., Singh, R., Chouhan, G.S. and Nepalia, V. (2017). Yield and economics of fenugreek (Trigonella foenum- graecum L.) as influenced by fertility levels, biofertilizers and brassinosteroid. Legume Research. 40(1): 165-169,https://doi.org/10.18805/lr.v0iOF.11192.
  19. Grabowska, A., Kunicki, K., Slêkara, A., Kalisz, A., Jezdinský, A. and Gintro-Wicz, K. (2015). The effect of biostimulants on the quality parameters of tomato grown for the processing industry. Agrochimica. 59(3): 203-217, https://doi.org/10.12871/0021857201531.
  20. Halpern, M., Bar-Tal, A., Ofek, M., Minz, D., Muller, T. and Yermiyahu, U. (2015). The Use of Biostimulants for Enhancing Nutrient Uptake. Advances in Agronomy130 January 2016. Elsevier Inc., https://doi.org/10.1016/bs.agron.2014.10.001.
  21. Hamedani, S.R., Rouphael, Y., Colla, G., Colantoni, A. and Cardarelli, M. (2020). Biostimulants as a tool for improving environmental sustainability of greenhouse vegetable crops. Sustainability (Switzerland) 12(12): 1-11, https://doi.org/10.3390/su12125101.
  22. Du Jardin, P. (2015). Plant biostimulants: Definition, concept, main categories and regulation. Scientia Horticulturae. 196: 3-14, https://doi.org/10.1016/j.scienta.2015.09.021.
  23. Kunicki, E., Grabowska, A., Sêkara, A. and Wojciechowska, R. (2010). The effect of cultivar type, time of cultivation and biostimulant treatment on the yield of spinach (Spinacia oleracea L.). Folia Horticulturae. 22(2): 9-13, https://doi.org/10.2478/fhort-2013-0153.
  24. Kumar, M., Rai, P.N., Sah, H. and Pratibha. (2013) Effect of Biofertilizers on Growth, Yield and Fruit Quality in Low-Chill Pear CV Gola. Agricultural Science Digest. 33(2): 114-117.
  25. Kumar, R., Deka, B.C., Kumawat, N. and Ngachan, S.V. (2014). Effect of integrated nutrition, biofertilizers and zinc application on production potential and profitability of garden pea (Pisum sativum L.) in eastern Himalaya, India. Legume Research. 37(6): 614-620, https://doi.org/10.5958/0976-0571.2014.00685.7.
  26. Lisiecka, J., Knaflewski, M., Spizewski, T., Fra’szczak, B., Ka£uzewicz, A. and Krzesiñski, W³. (2011). The effect of animal protein hydrolysate on quantity and quality of strawberry daughter plants cv. “Elsanta.” Acta Scientiarum Polonorum, Hortorum Cultus. 10(1): 31-40.
  27. de Lucia, B. and Vecchietti, L. (2012). Type of bio-stimulant and application method effects on stem quality and root system growth in L.A. Lily. European Journal of Horticultural Science. 77(1): 10-15.
  28. Mondal, M.M.A., Malek, M.A., Sattar, M.A., Puteh, A.B., Rafii, M.Y. and Ismail, M.R. (2013). Response of Biofertilizer and urea on growth and yield in Mungbean. Legume Research. 36(5): 448-452.
  29. Morales-Payan, J.P. and Stall, W.M. (2003). Papaya (Carica papaya) response to foliar treatments with organic complexes of peptides and amino acids. Proceedings of the ...annual meeting of the Florida State Horticultural Society. 116: 30-31.
  30. Nardi, S., Pizzeghello, D., Schiavon, M. and Ertani, A. (2016). Plant biostimulants: Physiological responses induced by protein hydrolyzed-based products and humic substances in plant metabolism. Scientia Agricola. 73(1): 18-23. https://doi.org/10.1590/0103-9016-2015-0006.
  31. Nurdiawati, A., Suherman, C., Maxiselly, Y., Akbar, M.A., Purwoko, B.A., Prawisudha, P. and Yoshikawa, K. (2019). Liquid feather protein hydrolysate as a potential fertilizer to increase growth and yield of patchouli (Pogostemon cablin Benth) and mung bean (Vigna radiata). International Journal of Recycling of Organic Waste in Agriculture. 8(3): 221-232, https://doi.org/10.1007/s40093-019-0245-y.
  32. Paraðikoviæ, N., Tekliææ, T., Zeljkoviæ, S., Lisjak, M. and Špoljareviæ, M. (2019). Biostimulants research in some horticultural plant species-A review. Food and Energy Security. 8(2): 1-17. https://doi.org/10.1002/fes3.162.
  33. Paradikoviæ, N., Vinkoviæ, T., Vinkoviæ Vrèek, I., Žuntar, I., Bojiæ, M. and Mediæ-Šariæ, M. (2011). Effect of natural biostimulants on yield and nutritional quality: An example of sweet yellow pepper (Capsicum annuum L.) plants. Journal of the Science of Food and Agriculture. 91(12): 2146–2152, https://doi.org/10.1002/jsfa.4431.
  34. Parant, A. (1990). [World population prospects]. Futuribles. (Paris, France/ : 1981) (141): 49–78.
  35. Polo, J. and Mata, P. (2018). Evaluation of a biostimulant (Pepton) based in enzymatic hydrolyzed animal protein in comparison to seaweed extracts on root development, vegetative growth, flowering and yield of gold cherry tomatoes grown under low stress ambient field conditions. Frontiers in Plant Science. 8(January): 1-8, https://doi.org/10.3389/fpls.2017.02261.
  36. Popko, M., Michalak, I., Wilk, R., Gramza, M., Chojnacka, K. and Górecki, H. (2018). Effect of the New Plant Growth Biostimulants Based on Amino Acids on Yield and Grain Quality of Winter Wheat. Molecules. 23(2): 470-83, https://doi.org/10.3390/molecules23020470.
  37. Radkowski, A. and Radkowska, I. (2013). Effect of Foliar Application of Growth Biostimulant on Quality and Nutritive Value of Meadow Sward. Ecological Chemistry and Engineering. A 20(10): 1205–1211, https://doi.org/10.2428/ecea. 2013. 20(10)110.
  38. Ram, R.A., Singha, A. and Singh, V.K. (2019). Improvement in yield and fruit quality of mango (Mangifera indica) with organic amendments. Indian Journal of Agricultural Sciences. 89(9): 1429-1433.
  39. Roberts, J.L. and Moreau, R. (2016). Functional properties of spinach (Spinacia oleracea L.) phytochemicals and bioactives. Food and Function. 7(8): 3337-3353,https://doi.org/10.1039/c6fo00051g.
  40. Rouphael, Y. and Colla, G. (2020). Editorial: Biostimulants in Agriculture. Frontiers in Plant Science. 11(February): 1-7. https://doi.org/10.3389/fpls.2020.00040.
  41. Rouphael, Y., Colla, G., Giordano, M., El-Nakhel, C.; Kyriacou, M.C. and De Pascale, S. (2017). Foliar applications of a legume-derived protein hydrolysate elicit dose-dependent increases of growth, leaf mineral composition, yield and fruit quality in two greenhouse tomato cultivars. Scientia Horticulturae. 226(September): 353-360, https://doi.org/10.1016/j.scienta.2017.09.007.
  42. Rouphael, Y., Colla, G. and de Pascale, S. (2020). Protein hydrolysate-based biostimulant improves yield and fruit quality of greenhouse fresh tomato. Acta Horticulturae. 1271(March): 335-342,https://doi.org/10.17660/Acta Hortic.2020.1271. 46.
  43. Rouphael, Y., Giordano, M., Cardarelli, M., Cozzolino, E., Mori, M., Kyriacou, M.C., Bonini, P. and Colla, G. (2018). Plant-and seaweed-based extracts increase yield but differentially modulate nutritional quality of greenhouse spinach through biostimulant action. Agronomy. 8(7): 1-15, https://doi.org/10.3390/agronomy8070126.
  44. Xu, C. and Mou, B. (2017). Drench Application of Fish-derived Protein Hydrolysates Affects Lettuce Growth, Chlorophyll Content and Gas Exchange 000(August),https://doi.org/10.21273/HORTTECH03723-17.
  45. Yakhin, O.I., Lubyanov, A.A., Yakhin, I.A. and Brown, P.H. (2017). Biostimulants in plant science: A global perspective. Frontiers in Plant Science. 7(January), https://doi.org/10.3389/fpls.2016.02049.
  46. Zulfiqar, F., Casadesús, A., Brockman, H. and Munné-Bosch, S. (2019). An overview of plant-based natural biostimulants for sustainable horticulture with a particular focus on moringa leaf extracts. Plant Science. (April): 110194, https://doi.org/10.1016/j.plantsci.2019.110194.

Global Footprints