Indian Journal of Agricultural Research

  • Chief EditorV. Geethalakshmi

  • Print ISSN 0367-8245

  • Online ISSN 0976-058X

  • NAAS Rating 5.60

  • SJR 0.293

Frequency :
Bi-monthly (February, April, June, August, October and December)
Indexing Services :
BIOSIS Preview, ISI Citation Index, Biological Abstracts, Elsevier (Scopus and Embase), AGRICOLA, Google Scholar, CrossRef, CAB Abstracting Journals, Chemical Abstracts, Indian Science Abstracts, EBSCO Indexing Services, Index Copernicus
Indian Journal of Agricultural Research, volume 51 issue 1 (february 2017) : 17-24

Genetic diversity of maize accessions for maize lethal necrosis disease resistance

Mujuni Sospeter Kabululu1, Joseph Ndunguru1, 2, Patrick Ndakidemi1*, Tileye Feyissa1, 3
1<p>Department of Sustainable Agriculture,&nbsp;Nelson Mandela African Institution of Science and Technology, P.O. Box 447, Arusha, Tanzania.</p>
Cite article:- Kabululu1 Sospeter Mujuni, Ndunguru1 Joseph, 2, Ndakidemi1* Patrick, Feyissa1 Tileye, 3 (2017). Genetic diversity of maize accessions for maizelethal necrosis disease resistance . Indian Journal of Agricultural Research. 51(1): 17-24. doi: 10.18805/ijare.v51i1.7056.

Maize is among the most preferred crop in Tanzania and other parts of the world. However, its production has been facing a number of challenges. Maize Lethal Necrosis Disease (MLND) is a new challenge in Eastern Africa. The control of MLND is said to be complicated as it is caused by a combination of more than one virus viz. Maize Chlorotic Mottle Virus (MCMV) and Sugarcane Mosaic Virus (SCMV). Stakeholders agree that the priority is to identify MLND resistant maize varieties. Genetic diversity provides the source of traits required against maize production challenges such as MLND. The study of genetic diversity in maize accessions often involves characterizing morphological plant characteristics as well as molecular marker techniques to study variation at DNA level. This review explores different literatures that address the importance of genetic diversity and the possibility of generating information towards obtaining potential materials against maize challenges and MLND in particular.


  1. Abdel-Mawgood, A. L. (2012). DNA based techniques for studying genetic diversity, genetic diversity in microorganisms. Prof. Mahmut Caliskan (Ed.), ISBN: 978-953-51-0064-5, InTech. Accessed on 25 May 2016 at: http://cdn.intechopen.com/pdfs-wm/28889.pdf.

  2. Abraha, T., Githiri, S. M., Kasili, R. W., Skilton, R. A., Solomon, M. and Nyende, A. B. (2014). Genetic diversity analysis of Eritrean Sorghum (Sorghum bicolor (L.) Moench) germplasm using SSR Markers. Mol Plant Breed. 5: 1-    12. http://mpb.biopublisher.ca.

  3. Aci, M. M., Revilla, P., Morsli, A., Djemel, A., Belalia, N., Kadri, Y., Khelifi-Saloui, M., Ordás, B. and Khelifi, L. (2013). Genetic diversity in Algerian maize (Zea mays L) landraces using SSR markers. Maydica 58: 304-310.

  4. Adams, I. P., Harju, V. A., Hodges, T., Hany, U., Skelton, A., Rai, S., Deka, M. K., Smith, J., Fox, A., Uzayisenga, B., Ngaboyisonga, C., Uwumukiza, B., Rutikanga, A., Rutherford, M., Ricthis, B., Phiri, N. and Boonham, N. (2014). First report of maize lethal necrosis disease in Rwanda. New Disease Reports. 29: 22. 

  5. Anjichi, V. E., Muasya, R. M., Gohole, L. S., Rao, N. K. and Muui, C. W. (2005). Genetic biodiversity assessment and local seed systems of maize landraces among smallholder farmers in Western Kenya. African Crop Science Conference Proceedings.7: 1335-1340.

  6. Anumalla, M., Roychowdhury, R., Geda, C. K., Mazid, M. and Rathoure, A. K. (2015). Utilization of plant genetic resources and diversity analysis tools for sustainable crop improvement with special emphasis on rice. IJAR. 3: 1155-1175.

  7. Arif, I. A., Bakir, M. A., Khan, H. A., Al Farhan, A. H., Al Homaidan, A. A., Bahkali, A. H., Sadoon, M. A. and Shobrak, M. (2010). A Brief review of molecular techniques to assess plant diversity. Int. J. Mol. Sci. 11: 2079-2096.

  8. Beyene, Y., Botha, A. and Myburg, A. A. (2005). A comparative study of molecular and morphological methods of describing genetic relationships in traditional Ethiopian highland maize. Afr. J. Biotechnol. 4: 586-595.

  9. Bindroo, B. B. and Moorthy, S. M. (2014). Genetic divergence, implication of diversity, and conservation of Silkworm, Bombyx mori . Int. J. Biodivers. 2014: 1-15.

  10. Brown-Guedira, G. L., Thompson, J. A., Nelson, R. L. and Warburton, M. L. (2000). ‘Evaluation of genetic diversity of soybean introductions and North American ancestors using RAPD and SSR markers’. Crop Sci. 40: 815-823.

  11. Camacho, V. T.C., Maxted, N., Scholten, M. and Ford-Lloyd, B. (2005). Defining and identifying crop landraces. Plant Genet Resour-C. 3: 373–384.

  12. CGIAR, (2012). Research program maize annual report. Mexico, D.F.: CIMMYT. Accessed on 23 December 2016 at: http://libcatalog.cimmyt.org/download/cim/98018.pdf.

  13. De Groote, H., Oloo, F., Tongruksawattana, S. and Das, B. (2016). Community-survey based assessment of the geographic distribution and impact of maize lethal necrosis (MLN) disease in Kenya. Crop Prot. 82: 30 - 35.

  14. De Jaramillo, E. H. (2009). Ecological aspects of biosafety. In: Biosafety of genetically modified organisms: Basic concepts, methods and issues. [Chowdhury, M. K. A, Hoque, M. I. and Sonnino, A. (Eds.)]. © FAO 2009, pp 51-105.

  15. Drinic, S. M., Andjelkovic V. and Micic, D. I. (2012). Genetic diversity of maize landraces as sources of favorable traits. The molecular basis of plant genetic diversity. Prof. Mahmut Caliskan (Ed.), ISBN: 978-953-51-0157-4, InTech. 

  16. DSMZ, (2014). Data sheet on maize lethal necrosis (MLN) disease. DS-MLND_V1.0 04/2014. Accessed on 24 December 2016 at: https://www.dsmz.de/fileadmin /Bereiche/PlantVirusesAndAntisera/Dateien/Data-MLND_V1-0.pdf.

  17. Dubreuil, P., Warburton, M., Chastanet, M., Hoisington, D. and Charcosset, A. (2006). ‘More on the introduction of temperate maize into Europe: large-scale bulk SSR genotyping and new historical elements’. Maydica. 51: 281-    291.

  18. Durga, K. K., Ankaiah, R. and Ganesh, M. (2015). Characterization of horse gram cultivars using plant morphological characters. Indian J. Agric. Res. 49: 215-221.

  19. Frese, L., Bjorn, G. K., Branca, F., Ford-Lloyd, B. V., Germeier, C. U., Iriondo, J. M., Katsiotis, A., Kell, S. P., Maxted, N., Negri V. and de Carvalho, M. A. A. P. (2012). Genetic reserve conservation of European crop wild relative and landrace diversity. In: Agrobiodiversity conservation by Maxted, N., Ehsan, D. M., Ford-Lloyd, B. V., Frese, L., Iriondo, J. M., Pinheiro de Carvalho, M. A. A. (Eds.). CABI, Wallingford, UK, 1: 1-6.

  20. Govindaraj, M., Vetriventhan, M. and Srinivasan, M. (2015). Importance of genetic diversity assessment in crop plants and its recent advances: An overview of its analytical perspectives. Genet Res Int. 2015: 1-14.

  21. Gowda, M., Das, B., Makumbi, D., Babu, R., Semagn, K., Mahuku, G., Olsen, M. S., Bright. J. M., Beyene, Y. and Prasanna, B. M. (2015). Genome-wide association and genomic prediction of resistance to maize lethal necrosis disease in tropical maize germplasm. Theor. and Appl. Genet. 128:1957–1968.

  22. Hagenblad, J., Oliveira, H. R., Nils E. G., Forsberg, N. E. G. and Leino, M. W. (2016). Geographical distribution of genetic diversity in Secale landrace and wild accessions. BMC Plant Biology, 16: 1-20. 

  23. Hodgkin, T., Roviglioni, R., de Vicente, M. C. and Dudnik, N. (2001). Molecular methods in the conservation and use of plant genetic resources. Acta Hortic. 546: 107–118.

  24. IBPGR (1991). Descriptors for maize. Mexico City (Mexique) / Rome (Italy), CIMMYT / IPGRI. Accessed on 24 December 2016 at: http://archive-ecpgr.cgiar.org/fileadmin/bioversity/publications/pdfs/104_Descriptors_for_maize. Descriptores_para_maiz.Descripteurs_pour_le_mais-cache=1415188810.pdf.

  25. Ignjatovic-Micic, D., Risitc, D., Babic, V., Andelkovic, V., Markovic, K. and Vancetovic, J. (2013). Genetic assessment of maize landraces from former Yugoslavia. Genetika. 45: 405-417.

  26. Ihsan, H., Khalil, I. H., Rehman, H. and Iqbal. M. (2005). Genotypic variability for morphological traits among exotic maize hybrids. Sarhad J. Agric. 21: 599-602.

  27. Isabirye, B. E. and Rwomushana, I. (2016 ). Current and future potential distribution of maize chlorotic mottle virus and risk of maize lethal necrosis disease in Africa. Crop Prot. 5: 215-228.

  28. Jerry, H. (2000). Number cruncher statistical systems (NCSS). statistical software, Utah. Kagoda, F., Gidoi, R., Isabirye, B. E. (2016). Status of maize lethal necrosis in eastern Uganda. Afr. J. Agric. Res. 11: 652-660.

  29. Kagoda, F., Gidoi, R. and Isabirye, B. E. (2016). Status of maize lethal necrosis in eastern Uganda. African Journal of Agricultural Research. 11: 652-660.

  30. Katinila, N., Verkuijl, H., Mwangi, W., Anandajayasekeram, P. and Moshi, A. J. (1998). Adoption of maize production technologies in southern Tanzania. Mexico, D.F.: International maize and wheat improvement center (CIMMYT), the United Republic of Tanzania, and the Southern Africa Centre for Cooperation in Agricultural Research (SACCAR).

  31. Kiruwa, F. A., Feyissa, T. and Ndakidemi, P. A. (2016). Insights of maize lethal necrotic disease: A major constraint to maize production in East Africa. Afr. J. Microbiol. Res. 10: 271-279.

  32. Kirway, T. N., Ulotu, H. A., Lyimo, S. D., Lema, N. M., Mduruma, Z. O., Semgalawe, Z. M., Akulumuka, V., Mushi, C. S., Rutaihwa, C. E. and Nyaki, A. S. (2000). The role of technology in poverty alleviation: farm household financial profitability of maize/beans intercropping technological packages.

  33. Kumari, J., Gadag, R. N. and Prasanna, B. M. (2005). Molecular profiling of maize (Zea mays L.) inbred lines using SSR markers. Indian J Genet Pl Br. 65: 249-252.

  34. Legesse, B. W., Myburg, A. A., Pixley, K. V. and Botha, A. M. (2006). Genetic diversity of maize inbred lines revealed by SSR markers. Hereditas 00: 1- 8.

  35. Liao, B., Weng, P. and Zhang, J. (2010). Contrasting genetic paths to morphological and physiological evolution. Proc Natl Acad Sci U S A. 16: 7353–7358.

  36. Liu, Z., Xia, X., Yang, C. and Huang, J. (2016). Colorimetric detection of Maize chlorotic mottle virus by reverse transcription loop-mediated isothermal amplification (RT-LAMP) with hydroxynapthol blue dye. RSC Adv. 6, 73.

  37. Mahuku, G., Lockhart, B. E., Wanjala, B., Jones, M. W., Kimunye, J. N., Stewart, L. R., Cassone, B. J., Sevgan, S., Nyasani, J. O., Kusia, E., Kumar, P. L., Niblett, C. L., Kiggundu, A., Asea, G., Pappu, H. R., Wangai, A., Prasanna, B. M. and Redinbaugh, M. G. (2015). Maize lethal necrosis (MLN), an emerging threat to maize-based food security in sub-Saharan Africa. Phytopathology 105:956-965.

  38. Makone, S. M., Menge, D. and Basweti, E. (2014). Impact of Maize Lethal Necrosis Disease on Maize yield: a case of Kisii, Kenya. Int. J. Agr. Ext. 02: 211-218.

  39. Makumbi, D. and Wangai, A. (2013). Maize lethal necrosis (MLN) disease in Kenya and Tanzania: Facts and actions. CIMMYT/KARI. Accessed on 26 May 2016 at: http://www.fao.org/fileadmin/user_upload/drought/docs/    1%20%20Maize%20Lethal%20Necrosis-%28MLN%29%20Facts%20and%20Actions.pdf.

  40. Matsuoka, Y., Mitchell, S. E., Kresovich, S., Goodman, M. and Doebley, J. (2002). Microsatellites in Zea – variability, patterns of mutations, and use for evolutionary studies. Theor Appl Genet. 104:436–450.

  41. Maxted, N., Magos, B. J. and Kell, S. (2013). Resource book for preparation of national conservation plans for crop wild relatives and landraces. Accessed on 23 December 2016, at: http://www.fao.org/fileadmin/templates/agphome/    documents/PGR/PubPGR/ResourceBook/TEXT_ALL_2511.pdf .

  42. Mercer, K. L. and Wainwright, J. D. (2007). Gene flow from transgenic maize to landraces in Mexico: An analysis. Agric. Ecosyst. Environ. 3068: 1- 7. 

  43. Mezzalama, M., Das, B. and Prasanna, B. M. (2015). MLN pathogen diagnosis, MLN-free seed production and safe exchange to non-endemic countries. CIMMYT brochure. Mexico, D.F.: CIMMYT. Accessed on 23 December 2016 at: http://repository.cimmyt.org/xmlui/bitstream/handle/10883/4284/56880.pdf?sequence=3.

  44. Mitawa, G. M. and Marandu, W. Y. F. (1996). Tanzania: Country report to the FAO international technical conference on plant genetic resources (Leipzig 1996). Accessed on 26 May 2016 at: http://www.fao.org/pgrfa-gpa-archive/tza/    docs/tanzania.pdf.

  45. Mondini, L., Noorani, A. and Pagnotta, M. A. (2009). Assessing plant genetic diversity by molecular tools, Diversity. 1: 19-35.

  46. Moshi, A. J., Mduruma, Z. O., Lyimo, N. G., Marandu, W. F. and Akonnay, H. B. (1990). Maize breeding for target environments in Tanzania. In A.J. Moshi and J.K. Ransom (eds.), Maize Research in Tanzania: Proceedings of the First Tanzania National Maize Research Workshop. Dar-Es-Salaam, Tanzania: TARO. Pp. 11-16.

  47. Ogwu, M. C., Osawaru, M. E. and Ahana, C. M. (2014). Challenges in conserving and utilizing plant genetic resources (PGR). Int. J. Genet. Mol. Biol. 6: 16-22.

  48. Olson, M. B., Morris, K. S. and Méndez, V., (2012). Cultivation of maize landraces by small-scale shade coffee farmers in western El Salvador. Agric. Syst. 111: 63–74.

  49. Osawaru, M. E., Ogwu, M. C. and Aiwansoba, R. O. (2015). Hierarchical approaches to the analysis of genetic diversity in plants: A systematic overview. University Of Mauritius Research Journal – Volume 21. 

  50. Otunge, D., Muchiri, N., Wachoro, G. and Kullaya, A. (2010). Mitigating the impact of drought in Tanzania: the WEMA intervention. Policy brief: African agricultural technology foundation (AATF) and the Tanzania commission for science and technology (COSTECH). Accessed on 23 December at: http://www.aatf-africa.org/userfiles/WEMA-    TZ-policy-brief1.pdf

  51. Pechanova, O. and Pechan, T. (2015). Maize-pathogen interactions: An ongoing combat from a proteomics perspective. Int. J. Mol. Sci. 16: 28429–28448. 

  52. Pineda-Hidalgo, K. V., Méndez-Marroquín, K. P., Alvarez, E. V., Chávez-Ontiveros, J., Sánchez-Peña, P., Garzón-Tiznado, J. A., Vega-García, M. O. and López-Valenzuela, J. A. (2013). Microsatellite-based genetic diversity among accessions of maize landraces from Sinaloa in México. Hereditas. 150: 53 – 59. 

  53. Poczai, P., Varga, I., Laos, M., Cseh, A., Bell, N., Valkonen, J. P. T. and Hyvönen, J. (2013). Advances in plant gene-    targeted and functional markers: a review. Plant Methods. 9: 1-31.

  54. Prasanna, B. M. (2010). Phenotypic and molecular diversity of maize landraces: characterization and utilization. Indian J. Genet. 70: 315-327.

  55. Prasanna, B. M. (2012). Diversity in global maize germplasm: Characterization and utilization. J. Biosci. 37: 843–855..

  56. Rahman, H., Ali, S., Shah, S. M. A., Shah, S. S., Rahman, N., Khalil, I. A., Hussain, I. and Afzal, F. (2008). Diversity for morphological and maturity traits in maize populations from upper Dir. Sarhad J. Agric. 24.

  57. Rao, V. R. and Hodgkin, T. (2002). Genetic diversity and conservation and utilization of plant genetic resources. Plant Cell Tiss Org. 68: 1–19.

  58. Reif, J. C., Warburton, M. L., Xia, X. C., Hoisington, D. A., Crossa, J., Taba, S., Muminovic, J., Bohn, M., Frisch, M. and Melchinger, A. E. (2006). Grouping of accessions of Mexican races of maize revisited with SSR markers. Theor Appl Genet. 113: 177–185.

  59. Ristic, D., Kostadinovic, M., Kravic, N., Andjelkovic, V., Vancetovic, J. and Ignjatovic-Micic, D. (2014). Genetic Diversity in maize flint landraces assessed by morphological and SSR Markers. J. Int. Sci. Publ. : Agric. Food. 2: 206-213.

  60. Rodriguez, M. G., Miguel-Chavez, R. S. and Larque-Saavedra, A. (1998). Physiological aspects in Tuxpeno maize with improved drought tolerance. Maydica 43: 137–141.

  61. Romay, M. C., Millard, M. J., Glaubitz, J. C., Peiffer, J. A., Swarts, K. L., Casstevens, T. M., Elshire, R. J., Acharya, C. B., Mitchell, S. E., Flint-Garcia, S. A., McMullen, M. D., Holland, J. B., Buckler, E. S. and Gardner, C. A. (2013). Comprehensive genotyping of the USA national maize inbred seed bank. Genome Biol. 14: 1-18.

  62. Saad, M. S and V. Rao, V. R. (2001). Establishment and management of field genebank, a training manual. IPGRI-APO, Serdang. Accessed on 26 May 2016 at: https://www.cbd.int/doc/case-studies/tttc/fieldgenebankmanual.pdf.

  63. Saghai-Maroof, M. A., Soliman, K. M., Jorgensen, R. A. and Allard, R. W. (1984). Ribosomal DNA spacer length polymorphisms in barley: Mendelian inheritance, chromosomal location and population dynamics. Proc Natl Acad Sci U S A. 81: 8014-8018.

  64. Sao, K. M., Nair, S. K., Verulkar, S. B., Saxena R. R. and Nanda, H. C. (2015). Molecular profiling and genetic diversity of mungbean (Vigna radiata L.) genotypes using ISSR and SSR markers. Indian J. Agric. Res. 48: 373-376.

  65. Saleh, B. K., Kasili, R. W., Mamati, E. G., Araia, W. and Nyende, A. B. (2016). Diversity of pepper (Capsicum spp.) genotypes from Eritrea assessed by morphological traits. J Agr Sci. 8: 156-168.

  66. Scheets, K. (1998). Maize chlorotic mottle Machlomovirus and wheat Streak Mosaic Rymovirus concentrations increase in the synergistic disease corn lethal Necrosis. Virology. 242: 28–38.

  67. Semagn, K., Bjørnstad, Å. and Ndjiondjop, M. N. (2006). An overview of molecular marker methods for plants. Afr. J. Biotechnol. 5: 2540-2568.

  68. Senior M. X., Murphy J. P., Goodman M. M. and Stuber C. W. (1998). Utility of SSRs for determining genetic similarities and relationships in maize using an agarose gel system. Crop Sci. 38: 1088-1098.

  69. Sharma, R., Maloo, S. R., Joshi, A. and Choudhary, S. (2015). Assessment of genetic divergence in diverse maize (Zea mays L.) genotypes. Indian J. Agric. Res. 49: 476-478.

  70. Sood, S., Flint-Garcia, S., Martha, C., Willcox, M. C. and Holland, J. B. (2014). Mining natural variation for maize improvement: Selection on phenotypes and genes. Tuberosa, R., Graner, A., Frison, E (eds.). Genomics of Plant Genetic Resources. Springer, Netherlands.

  71. Uphoff, N., Fasoula, V., Iswandi, A., Kassam, A. and Thakur, A. K. (2015). Improving the phenotypic expression of rice genotypes: Rethinking “intensification” for production systems and selection practices for rice breeding. The Crop Journal. 3: 174–189.

  72. Wan, Q., Wu, H., Fujihara, T. and Fang, S. (2004). Which genetic marker for which conservation genetics issue?. Electrophoresis. 25: 2165–2176.

  73. Wangai, A., Kinyua, Z. M., Otipa, M. J., Miano, D. W., Kasina, J. M., Leley, P. K. and Mwangi, T. N. (2012a). Maize (corn) lethal necrosis (MLN) disease. KARI Information Brochure. Accessed on 26 May 2016 at: http://    www.fao.org/fileadmin/user_upload/drought/docs/1%20%20Maize%20Lethal%20Necrosis%20KARI.pdf.

  74. Wangai, A. W., Redinbaugh, M. G., Kinyua, Z. M., Miano, D. W., Leley, P. K., Kasina, M., Mahuku, G., Scheets, K. and Jeffers, D. (2012b). First report of maize chlorotic mottle virus and maize lethal necrosis in Kenya. Plant Dis. 96:1582-1583. 

  75. Westengen, O. T., Ring, K. H., Berg, P. R. and Brysting, A. K. (2014). Modern maize varieties going local in the semi-arid zone in Tanzania. BMC Evolutionary Biology. 14: 1-12.

  76. Xia, Z., Zhao, Z., Chen, L., Li, M., Zhou, T., Deng, C., Zhou, Q. and Fan, Z. (2016). Synergistic infection of two viruses MCMV and SCMV increases the accumulations of both MCMV and MCMV-derived siRNAs in maize. Scientific Reports 6, 20520; doi: 10.1038/srep20520.

  77. Yýlmaz, M., Ozic, C. and Gok, Ý . (2012). Principles of Nucleic Acid Separation by Agarose Gel Electrophoresis, Gel Electrophoresis - principles and basics, Dr. Sameh Magdeldin (Ed.), ISBN: 978-953-51- 0458-2, InTech.

  78. Zeven, A. C. (1998). Landraces: A review of definitions and classifications. Euphytica. 104: 127–139.

  79. Zhang, Y., Zhao, W., Li, M., Chen, H., Zhu, S. and Fan, Z. (2011). Real-time TaqMan RT-PCR for detection of maize chlorotic mottle virus in maize seeds. J. Virol Methods. 171: 292-294.

     

Editorial Board

View all (0)