POTENTIAL ALLELOPATHIC EFFECTS OF LUDWIGIA ADSCENDENS L. ON THE SEED GERMINATION AND SEEDLING GROWTH OF RICE

Article Id: ARCC001 | Page : 1-15
Citation :- POTENTIAL ALLELOPATHIC EFFECTS OF LUDWIGIA ADSCENDENS L. ON THE SEED GERMINATION AND SEEDLING GROWTH OF RICE.Indian Journal Of Agricultural Research.2013.(47):1-15
Abhishek Mukherjee and Anandamay Barik* anandamaybarik@yahoo.co.in
Address : Ecology Research Laboratory, Department of Zoology, The University of Burdwan, Burdwan – 713 104, India

Abstract

The allelopathic potential of Ludwigia adscendens L. was studied under laboratory conditions and pot experiments in field conditions. Different parts (viz. leaf, stem, and leaf+stem) of the weed exudates at 2.5, 5, and 10% (w/v) concentrations were applied to determine their effect on rice (Oryza sativa cv. Satabdi) seed germination and seedling growth under laboratory conditions. Increasing concentrations of leaf and stem of L. adscendens weed inhibited seed germination and seedling growth of rice. Further, leaf+stem extract of this weed synergistically also inhibited seed germination and seedling growth of rice. The plumules of rice seedlings were more sensitive to allelopathic effects than radicles.  Increasing concentrations from leaf, stem, and leaf+stem of this weed significantly (P

Keywords

Allelopathic effects Bioassay Exudates Germination Ludwigia adscendens Rice Seedling growth.

References

  1. Alsadawi, I.S and Salih, N.M.M. (2009). Allelopathic potential of Cyperus rotundus L. I. Interference with crops. Allelopathy J., 23:297–304.
  2. Ashrafi, Y.Z.; Sadeghi, S.; Mashhadi, R.H. and Hassan, A.M. (2008). Allelopathic effect of sunflower (Helianthus annuus) on germination and growth of wild barley (Hordeum spontaneum). J. Agric. Technol., 4:219–229.
  3. Belgz, R.G. (2008). Stimulation versus inhibition-bioactivity of parthenin, a phytochemical from Parthenium hysterophorus L. Dose Response, 6:80–96.
  4. Bogatek, R.; Gniazdowska, A.; Zakrzewska, W.; Oracz, K. and Gawronski, S. W. (2006). Allelopathic effects of sunflower extracts on mustard seed germination and seedling growth. Biol. Plant., 50:156–158.
  5. Chen, C.J.; Hoch, P. C. and Raven, P. H. (1992). Systematics of Epilobium (Onagraceae) in China. System Bot. Monogr., 34:1–209.
  6. Chon, S.U.; Jang, H.G.; Kim, D.K.; Kim, Y.M.; Boo, H.O. and Kim, Y.J. (2005). Allelopathic potential in lettuce (Lactuca sativa L.) plants. Sci. Hortic., 106:309–317.
  7. Cronk, Q. C. B and Fuller, J. L. (1995). Plant Invaders: The threat to natural ecosystems. Chapman and Hall, London.
  8. Dandelot, S.; Robles, C.; Pech, N.; Cazaubon, A. and Verlaque, R. (2008). Allelopathic potential of two invasive alien Ludwigia spp. Aquat. Bot., 88:311–316.
  9. Ghani, A. (1998). Medicinal plants of Bangladesh: Chemical constituents and uses. Asiatic Society of Bangladesh, Dhaka.
  10. Gopal, B and Goel, U. (1993). Competition and allelopathy in aquatic plant communities. Bot. Rev. 599:155–210.
  11. Ismail, B.S and Chong, T.N. (2009). Allelopathic effects of Dicranopteris linearis debris on common weeds of Malaysia. Allelopathy J., 23:277–286.
  12. King, L.J. (1974). Weeds of world: Biology and Control. First Willey Eastern Reprint, New Delhi, India.
  13. Maguire, J.D. (1962). Speed of germination-aid in selection and evaluation for seedling emergence and vigour. Crop Sci., 2:176–177.
  14. Nayek, T.K and Banerjee, T.C. (1987). Life history and host specificity of Altica cyanea (Coleoptera: Chrysomelidae), a potential biological control agent for water primrose, Ludwigia adscendens. Entomophaga, 32:407–414.
  15. Obaid, K.A and Qasem, J.R. (2005). Allelopathic activity of common weed species on vegetable crops grown in Jordan. Allelopathy J., 15:221–235.
  16. Qasem, J.R. (2001). Allelopathic potential of white top and Syrian sage on vegetable crops. Agron. J., 93:64–71.
  17. Roy, N and Barik, A. (2010). Allelopathic potential of Ludwigia adscendens (L.) on germination and seedling growth of greengram, Vihna radiata (L.) cultivated after rice. Agric. Sci. Digest, 30:192–196.
  18. Sagar, G.R. (1974). On the ecology of weed control. In: Biology, Pest and Disease Control (Eds., D.P. Jones and M.E. Solomon), Halsted Press, New York. Pp. 42–56.
  19. Sakpere, A.M.; Oziegbe, M. and Bilesanmi, A. (2010). Allelopathic Effects of Ludwigia decurrens and L. adscendens subsp. diffusa on germination, seedling growth and yield of Corchorus olitorious L. Not. Sci. Biol., 2:75–80.
  20. Singhvi, N. R and Sharma, K. D. (1984). Allelopathic effects of Ludwigia adscendens L. and Ipomoea aquatica Forsk. on seedling growth of pearl millet (Pennisetum typhoidium Rich.). Transactions ISDTUCDS, 9:95–100.
  21. Sobhana, S.; George, S. and Sheela, K. R. (1990). Preliminary studies on allelopathic effect on weeds in rice of seed germination. Oryza, 27:94–95.
  22. Tawaha, A.M and Turk, M.A. (2003). Allelopathic effects of Black mustard (Brassica nigra) on germination and growth of wild barley (Hordeum spontaneum). J. Agron. Crop Sci., 189: 298–303.
  23. Teasdale, J.R and Mohler, C.L. (2000). The quantitative relationship between weed emergence and the physical properties of mulches. Weed Sci., 48:385–392.
  24. Wakjira, M.; Berecha, G. and Bulti, B. (2005). Allelopathic effects of Parthenium hysterophorus extracts on seed germination and seedling growth of lettuce. Trop. Sci., 45:159–162.
  25. Wakjira, M. (2009). Allelopathic effects of Parthenium hysterophorus L. on germination and growth of onion. Allelopathy J., 24:351–362.
  26. Wang, J.C.; Wu, Y.; Wang, Q.; Peng, Y.L.; Pan, K.W.; Luo, P. and Wu, N. (2009). Allelopathic effects of Jatropha curcas on marigold (Tagetes erecta L.). Allelopathy J., 24:123–130.
  27. Wogu, A and Ugborogho, R. E. (2000). Seed morphology, germination and seedling characters in Ludwigia species (Onagraceae) in Nigeria as aids to identification. Seed Sci. Technol., 28: 657–697.
  28. Zar, J.H. (1999). Biostatistical Analysis. 4th Edition. Prentice Hall. Upper Saddle River, USA.
  29. Zhang, C and Fu, S. (2010). Allelopathic effects of leaf litter and live roots exudates of Eucalyptus species on crops. Allelopathy J., 26:91–100.Teasdale, J.R and Mohler, C.L. (2000). The quantitative relationship between weed emergence and the physical properties of mulches. Weed Sci., 48:385–392.
  30. Wakjira, M.; Berecha, G. and Bulti, B. (2005). Allelopathic effects of Parthenium hysterophorus extracts on seed germination and seedling growth of lettuce. Trop. Sci., 45:159–162.
  31. Wakjira, M. (2009). Allelopathic effects of Parthenium hysterophorus L. on germination and growth of onion. Allelopathy J., 24:351–362.
  32. Wang, J.C.; Wu, Y.; Wang, Q.; Peng, Y.L.; Pan, K.W.; Luo, P. and Wu, N. (2009). Allelopathic effects of Jatropha curcas on marigold (Tagetes erecta L.). Allelopathy J., 24:123–130.
  33. Wogu, A and Ugborogho, R. E. (2000). Seed morphology, germination and seedling characters in Ludwigia species (Onagraceae) in Nigeria as aids to identification. Seed Sci. Technol., 28: 657–697.
  34. Zar, J.H. (1999). Biostatistical Analysis. 4th Edition. Prentice Hall. Upper Saddle River, USA.
  35. Zhang, C and Fu, S. (2010). Allelopathic effects of leaf litter and live roots exudates of Eucalyptus species on crops. Allelopathy J., 26:91–100.

Global Footprints