Indian Journal of Agricultural Research

  • Chief EditorV. Geethalakshmi

  • Print ISSN 0367-8245

  • Online ISSN 0976-058X

  • NAAS Rating 5.60

  • SJR 0.293

Frequency :
Bi-monthly (February, April, June, August, October and December)
Indexing Services :
BIOSIS Preview, ISI Citation Index, Biological Abstracts, Elsevier (Scopus and Embase), AGRICOLA, Google Scholar, CrossRef, CAB Abstracting Journals, Chemical Abstracts, Indian Science Abstracts, EBSCO Indexing Services, Index Copernicus
Indian Journal of Agricultural Research, volume 54 issue 4 (august 2020) : 506-510

Effectiveness of Melaleuca cajuputi Biochar as a Leaching Loss for Nitrogen Fertilizer and Intercropping in Maize

Aprilia Ike Nurmalasari, Supriyono, Priyono Suryanto, Taufan Alam
1Department of Agrotechnology, Faculty of Agriculture, Universitas Sebelas Maret, Surakarta-57126, Central Java, Indonesia.
Cite article:- Nurmalasari Ike Aprilia, Supriyono, Suryanto Priyono, Alam Taufan (2020). Effectiveness of Melaleuca cajuputi Biochar as a Leaching Loss for Nitrogen Fertilizer and Intercropping in Maize. Indian Journal of Agricultural Research. 54(4): 506-510. doi: 10.18805/IJARe.A-579.
Background: Biochar has a function for soil amendment and leaching loss for nitrogen fertilizer. The objectives of this study was to evaluate the effectiveness of Melaleuca cajuputi biochar as a leaching loss for nitrogen fertilizer and intercropping in maize.
Methods: The study was conducted from February to June 2019 in Menggoran Forest Resort, Playen District, Gunungkidul Regency, Special Province of Yogyakarta, Indonesia. The experimental design was a randomized complete block design (RCBD) factorial with three replications as the response surface methodology (RSM). The treatments consisted of biochar levels made from Melaleuca cajuputi waste (0, 5, 10, 15 tons ha-1) and nitrogen fertilizer levels sourced from urea (0, 150, 300 kg ha-1) as independent variables. The observation parameters were nitrate reductase activity (NRA), total chlorophyll (TC), net photosynthesis (NP), nitrogen loss (NL), nitrogen use efficiency (NUE) and seed yield per hectare (SY).
Result: The RSM revealed that the optimum value of 13.290 tons ha-1 of Melaleuca cajuputi biochar (MCB) and 245.350 kg ha-1 of nitrogen fertilizer (NF) can reduced urea by 18.22%. This recommendation increased NRA, TC, NP, NL, NUE and SY by 35.28%, 19.55%, 18.09%, -46.81%, 27.96% and 61.78%, respectively, in compare to the single application of urea. 
  1. Abebe, Z., Feyisa, H. (2017). Effects of nitrogen rates and time of application on yield of maize- Rainfall variability influenced time of N application. International Journal Agronomy. 2017: 1-10. DOI: 10.1155/2017/1545280.
  2. Alam, T., Kurniasih, B., Suryanto, P., Basunanda, P., Supriyanta., Ambarwati, E., Widyawan, M.H., Handayani, S., Taryono. (2019). Stability analysis for soybean in agroforestry system with kayu putih. SABRAO Journal of Breeding and Genetics. 51: 405-418.
  3. Coumaravel, K., Santhi, R., Kumar, V.S., Mansour, M.M. (2011). Biochar- A promising soil additive-a review. Agricultural Reviews. 32: 134-139.
  4. Coumaravel, K., Santhi, R., Maragatham, M. (2015). Effect of biochar on yield and nutrient uptake by hybrid maize and on soil fertility. Indian Journal of Agricultural Research. 49:185-188. DOI: 10.5958/0976-058X.2015.00028.1.
  5. Emrich, W. (1985). Handbook of biochar making- The traditional and industrial methods. Commission of the European Communities Directorate, Luxembourg City.
  6. Fageria, N.K. (2014). Nitrogen management in crop production. CRC Press, New York.
  7. Gross, J. (1991). Pigmentin vegetable, chlorophyll and caretinoids. Van Nonstrand Reinhold, New York.
  8. Hagner, M., Kemppainen, R., Jauhiainen, L.,Tiilikkala, K., Setälä, H. (2016). The effects of birch (Betula spp.) biochar and pyrolysis temperature on soil properties and plant growth. Soil and Tillage Research. 163: 224-234. DOI:10.1016/j.still.2016.06.006.
  9. Haider, G., Steffens, D., Müller, C., Kammann, C.I. (2016). Standard extraction methods may underestimate nitrate stocks captured by field aged biochar. Journal of Environmental Quality. 45: 1196-1204. DOI: 10.2134/jeq2015.10.0529.
  10. Hokmalipour, S., Darbandi, M.H. (2012). Effects of nitrogen fertilizer on chlorophyll content and other leaf indicate in three cultivars of maize (Zea mays L.). World Applied Science Journal. 15: 1780-1785.
  11. Indrawati, U.S.Y.V., Ma’as, A., Utami, S.N.H., Hanuddin, E. (2017). Characteristics of three biochar types with different pyrolysis time as ameliorant of peat soil. Indian Journal of Agricultural Research. 51: 458-462. DOI: 10.18805/IJARe.A-274.
  12. Jeffery, S., Abalos, D., Prodana, M., Bastos, A., Van Groenigen, J.W., Hungate, B., Verheijen, F. (2017). Biochar boosts tropical but not temperate crop yields. Environmental Research Letters. 12: 053001. DOI: 10.1088/1748-9326/aa67bd.
  13. Koocheki, A., Mahallati, M.N., Moradi, R., Mansoori, H. (2014). Optimizing water, nitrogen and crop density in canola cultivation using response surface methodology and central composite design. Soil Science and Plant Nutrition. 60: 286-298. DOI: 10.1080/00380768.2014.893535.
  14. Krywult, M., Bielec, D. (2013). Method of measurement of nitrate reductase activity in field conditions. Journal Ecological Engineering. 14: 7-11. DOI: 10.5604/2081139X.1031524.
  15. Li-Cor. (1999). Using the Li-6400; Portable photosynthesis system. LI-Cor Inc., Lincoln, Nebraska.
  16. Loussaert, D., Clapp,J., Mongar, N., O’Neill, D.P., Shen, B. (2018). Nitrate assimilation limits nitrogen use efficiency (NUE) in maize (Zea mays L.). Agronomy. 8: 110. DOI: 0.3390/agronomy8070110.
  17. Macil, P.J., Ogola, J.B.O., Odhiambo, J.J.O., Lusiba, S.G. (2017). The response of some physiological traits of chickpea (Cicer arietinum L.) to biochar and phosphorus fertilizer application. Legume Research- An International Journal. 40: 299-305. DOI: 10.18805/lr.v0i0.7290.
  18. Major, J., Rondon, M., Molina, D., Riha, S.J., Lehmann, J. (2012). Nutrient leaching in a Colombian savanna Oxisol amended with biochar. Journal of Environmental Quality. 41: 1076-1086. DOI: 10.2134/jeq2011.0128.
  19. Major, J., Rondón, M., Molina, D., Riha, S.J., Lehmann, J. (2010). Maize yield and nutrition during 4 years after biochar application to a Colombian savanna oxisol. Plant Soil. 333: 117-128.DOI: 10.1007/s11104-010-0327-0.
  20. Marquardt, D.W., Snee, R.D. (1975). Ridge regression in practice. The American Statistician. 29: 3-20.
  21. Marschner, H. (2012). Mineral nutrition of higher plants. Academic Press, London.
  22. Ministry of Agriculture. (2018). Surplus, republic of indonesia maize exports. Food Security Agency, Ministry of Agriculture, Jakarta.
  23. Myers, R.H., Montgomery, D.C., Cook, C.M.A. (2009). Response surface methodology - Process and product optimization using designed experiments. John Wiley and Sons, New Jersy.
  24. Oladele, S., Adeyemo, A., Awodun, M. (2019). Effects of biochar and nitrogen fertilizer on soil physicochemical properties, nitrogen use efficiency and upland rice (Oryza sativa) yield grown on an Alfisol in Southwestern Nigeria. International Journal of Recycling of Organic Waste Agriculture. 8: 295- 308. DOI: 10.1007/s40093-019-0251-0.
  25. Purbajanti, E.D., Slamet, W., Fuskhah, E., Rosyida. (2019). Effects of organic and inorganic fertilizers on growth, activity of nitrate reductase and chlorophyll contents of peanuts (Arachis hypogaea L.). IOP Conference Series; Earth and Environmental Science. 250: 012048. DOI: 10.1088/    1755-1315/250/1/012048.
  26. Rathke, G.W., Behrens, T., Diepenbrock, W. (2006). Integrated nitrogen management strategies to improve seed yield, oil content and nitrogen efficiency of winter oilseed rape (Brassica napus L.) - A review. Agriculture, Ecosystems and Environment. 117: 80-108. DOI: 10.1016/j.agee. 2006.04.006.
  27. Rumpel, C., Baumann, K., Remusat, L., Dignac, M.F., Barre, P., Deldicque, D., Glasser, G., Lieberwirth, I., Chabbi, A. (2015). Nano scale evidence of contrasted processes for root-derived organic matter stabilization by mineral interactions depending on soil depth. Soil Biology and Biochemistry. 85: 82-88. DOI: 10.1016/j.soilbio.2015.02.017.
  28. SAS Institute. (2013). SAS system for windows 9.4. SAS Institute Inc., North Carolina.
  29. Suryanto, P., Tohari., Sulistyaningsih, E., Putra, E.T.S., Kastono, D., Alam, T. (2017). Estimation of critical period for weed control in soybean on agro-forestry system with kayu putih. Asian Journal Crop Science. 9: 82-91. DOI: 10.3923 /ajcs.2017.82.91.
  30. Weih, M., Hamner, K., Pourazari, F. (2018). Analyzing plant nutrient uptake and utilization efficiencies- Comparison between crops and approaches. Plant Soil. 430: 7-21. DOI: 10.    1007/s11104-018-3738-y.
  31. Xu, C.Y., Hosseini Bai, S., Hao, Y., Rachaputi, R.C, Wang, H., Xu, Z., Wallace, H. (2015). Effect of biochar amendment on yield and photosynthesis of peanut on two types of soils. Environmental Science and Pollution Research International. 22: 6112-6125. DOI:10.1007/s11356-014-3820-9.
  32. Zhang, X., Huang, G., Bian, X., Zhao, Q. (2013). Effects of root interaction and nitrogen fertilization on the chlorophyll content root activity, photosynthetic characteristics of intercropped soybean and microbial quantity in the rhizosphere. Plant Soil and Environment. 59: 80-88. DOI: 10.17221/613/2012-PSE.
  33. Zhao, H., Li, X., Jiang, Y. (2019). Response of nitrogen losses to excessive nitrogen fertilizer application in intensive greenhouse vegetable production. Sustainability. 11: 1-15. DOI: 10.3390/su11061513.

Editorial Board

View all (0)