Indian Journal of Agricultural Research

  • Chief EditorT. Mohapatra

  • Print ISSN 0367-8245

  • Online ISSN 0976-058X

  • NAAS Rating 5.60

  • SJR 0.293

Frequency :
Bi-monthly (February, April, June, August, October and December)
Indexing Services :
BIOSIS Preview, ISI Citation Index, Biological Abstracts, Elsevier (Scopus and Embase), AGRICOLA, Google Scholar, CrossRef, CAB Abstracting Journals, Chemical Abstracts, Indian Science Abstracts, EBSCO Indexing Services, Index Copernicus
Indian Journal of Agricultural Research, volume 51 issue 3 (june 2017) : 233-238

Evaluation of agronomic performance of local and improved maize varieties in Tanzania

Mujuni Sospeter Kabululu, Tileye Feyissa, Patrick Alois Ndakidemi
1<p>Nelson Mandela African Institution of Science and&nbsp;Technology, P.O. Box 447, Arusha, Tanzania</p>
Cite article:- Kabululu Sospeter Mujuni, Feyissa Tileye, Ndakidemi Alois Patrick (2017). Evaluation of agronomic performance of local and improved maize varieties in Tanzania . Indian Journal of Agricultural Research. 51(3): 233-238. doi: 10.18805/ijare.v51i03.7912.

Fifty Tanzanian local maize cultivars, seven popularly grown commercial varieties in Tanzania and eleven elite lines from CIMMYT, Nairobi, Kenya were evaluated for agronomic performance. The genotypes were subjected to randomized complete block design at three sites in 2015, both conducted at Arusha region, in Tanzania. The analysis identified highly significant variances among genotypes evaluated and their interactions with environments. The GGE biplot analyses identified the winning genotypes on mean yield and stability. An open pollinated variety (OPV) Situka 1 and an hybrid DH 04 had generally the best performance in terms of grain yield and stability across all three locations. A local cultivar TZA 2793 emerged to be the promising landrace with overall appealing yield and stability performance. The obtained information through this current study may be a good source of new allelic diversity that could be used for developing different important elite maize materials.

  1. Bolafios, J. and Edmeades, G. O. (1996). The importance of the anthesis-silking interval in breeding for drought tolerance in tropical maize. Field Crops Res. 48: 65-80.

  2. Carvalho, V. P., Ruas, C. F., Josué, M., Ferreira, J. M., Moreira, R. M. P. and Ruas, P. M. (2004). Genetic diversity among maize (Zea mays L.) landraces assessed by RAPD markers. Genet Mol Biol. 27(2): 228-236.

  3. Dogan, Y., Ekinci, M. B., Togay, N. and Togay, Y. (2015). Determination of suitable nitrogen doses for growing second product maize (Zea mays L.) varieties in chickpea planting fields and its economic analysis. Indian J. Agric. Res. 49(2): 125-133.

  4. Dowswell, C. R., Paliwal, R. L. and Cantrell, R. L. (1996). Maize in the Third World. Westview Press, USA.

  5. Edmeades, G.O., Bolanos, J., Hernandez, M. and Bello, S. (1993). Causes for silk delay in lowland tropical maize. Crop Sci. 33: 1029–1035.

  6. Gudu, S. O., Okalebo, J. R., Othieno, C. O., Obura, P. A., Ligeyo, D. O., Shulze D. and Johnston, C. (2005). Response of five maize genotypes to nitrogen, phosphorus and lime on acid soils of western Kenya. African Crop Science Conference Proceedings. 7: 1109-1115.

  7. Guruprasad, M., Sridevi, V., Vijayakumar, G. and Kumar. M. S. (2016). Plant regeneration through callus initiation from mature and immature embryos of maize (Zea mays L.). Indian J. Agric. Res., 50(2): 135-138.

  8. Hugos, H. G. and Abay, F. (2013). AMMI and GGE biplot analysis of bread wheat genotypes in the northern part of Ethiopia. J. Plant Breed. Genet. 1: 12-18.

  9. Katinila, N., Verkuijl, H., Mwangi, W., Anandajayasekeram, P. and Moshi. A. J. (1998). Adoption of Maize Production Technologies in Southern Tanzania. Mexico, D.F.: International Maize and Wheat Improvement Center (CIMMYT), the United Republic of Tanzania, and the Southern Africa Centre for Cooperation in Agricultural Research (SACCAR).

  10. Lisuma, J. B., Semoka, J. M. R. and Semu, E. (2006). Maize yield response and nutrient uptake after micronutrient application on a volcanic soil. Agron J. 98: 402-406.

  11. Makurira, H., Savenije, H. H. G., Uhlenbrook, S., Rockstrom J. and Senzanje, A. (2007). Towards a better understanding of water partitioning processes for improved smallholder rainfed agricultural systems: A case study of Makanya catchment, Tanzania. Phys. Chem. Earth. 32:1082-1089.

  12. Mehari, M., Alamerew S. and Lakew, B. (2015). Genotype by environment interaction for protein content of malt Barley genotypes using the additive main effect and multiplicative interaction effect model (AMMI) and genotype plus genotype by environment interaction (GGE) Biplot. Asian J. Agric. Sci. 9(6): 305-314.

  13. Nass, L. L., Pellicano I. T. and Valois, A. C. C. (1993). Utilization of genetic resources for maize and soybean breeding in Brazil. Brazil J Genet. 16: 983–988.

  14. Olaoye, G. (2009). Evaluation of new generations of maize streak virus (MSV) resistant varieties for grain yield, agronomic potential and adaptation to a southern guinea savanna ecology of Nigeria. Journal of Tropical Agriculture Food, Environment and Extension. 8(2): 104-109.

  15. Omondi, E. C., Norton J. B. and Ashilenje, D. S. (2014). Performance of local open pollinated maize variety and a common hybrid variety under intensive small scale farming practices. Afr. J. Agric. Res. 9(11): 950-955.

  16. Otunge, D., Muchiri, N., Wachoro, G. and Kullaya, A. (2010). Mitigating the impact of drought in Tanzania: the WEMA intervention. Policy brief: African agricultural technology foundation (AATF) and the Tanzania commission for science and technology (COSTECH). Accessed on 25 December 2016 at:

  17. Salami, A. E., Adegoke S. A. O. and Adegbite, O. A. (2007). Genetic variability among maize cultivars grown in Ekiti-State, Nigeria-    East. Middle-East J. Sci. Res. 2(1): 9-13.

  18. Singh, T. (2015). Genetic diversity analysis of durum wheat (Triticum durum Desf.). Indian J. Agric. Res. 49(1) : 65-70.

  19. Sharma, R., Maloo, S. R., Joshi, A. and Choudhary, S. (2015). Assessment of genetic divergence in diverse maize (Zea mays L.) genotypes. Indian J. Agric. Res. 49(5) 2015 : 476-478.

  20. Toshimenla., Singh, J. and Changkija, S. (2016). Genetic divergence studies on upland rice grown in Nagaland, India. Indian J. Agric. Res., 50(6): 555-560.

  21. Wasala, S. K., Guleria, S. K., Sekhar, J. C., Mahajan, V., Srinivasan, K., Parsad R. and Prasanna, B. M. (2013). Analysis of yield performance and genotype × environment effects on selected maize (Zea mays L.) landrace accessions of India. Indian J Agric Sci. 83(3): 287-9

  22. Yan, W. and Tinker, N. A. (2006). Biplot analysis of multi-environment trial data: Principles and applications. Can J Plant Sci. 86: 623-645.

  23. Yan, W. K., Hunt, L. A., Sheng, Q. L. and Szlavnics, Z. (2000). Cultivar evaluation and mega-environment investigation based on the GGE Biplot. Crop Science. 40: 597-605.

  24. Yan, W., Kang, M. S., Ma, B., Woods, S. P. and Cornelius, L. (2007). GGE biplot vs. AMMI analysis of genotype-by-environment data. Crop Sci. 47: 643-653.

  25. Zarei, B., Kahrizi, D., Aboughadareh, A. P. and Sadeghi, F. (2012). Correlation and path coefficient analysis for determining interrelationships among grain yield and related characters in corn hybrids (Zea mays L.). Intl J Agri Crop Sci. 4(20): 1519-    1522.


Editorial Board

View all (0)