Loading...

Closing the Gap in the “ABC” Model in Legumes: A Review

DOI: 10.18805/LRF-694    | Article Id: LRF-694 | Page : 1465-1475
Citation :- Closing the Gap in the “ABC” Model in Legumes: A Review.Legume Research.2022.(45):1465-1475
Manuel Hidalgo, Cynthia Ramos, Jonathan Vásquez-Regalado, Gastón Zolla gemzb@yahoo.com
Address : Laboratorio de Fisiología molecular de Plantas del Programa de Cereales y Granos nativos, Facultad de Agronomía, Universidad Nacional Agraria La Molina, Lima 12, Perú.
Submitted Date : 21-04-2022
Accepted Date : 19-07-2022

Abstract

From the ancestral bisexual flower (BC model) with radial symmetry to Fabaceae flower with bilateral symmetry and a keel petal, it is critical to understand ABC model because high seed yield and food safety depend on flower bud development. Thus, we summarize the information of the genetic mechanism that explains the identity of the floral organs for Sophoreae, Phaseoleae, Dalbergieae and Genisteae tribes. Moreover, we examine the role of non-coding RNAs on floral development at Cajaninae subtribe, Dalbergieae and Genisteae tribes.

Keywords

ABC model Fabaceae Flower development Legume Non-coding RNA

References

  1. Alvarez-Buylla, E.R., Benítez, M., Corvera-Poiré, A., Cador, A.C., Folter, S.D., Buen, A.G.D. et al. (2010). Flower Development. The Arabidopsis Book. 8: e0127. DOI: 10.1199/tab.0127.
  2. Alyr, M.H., Pallu, J., Sambou, A., Nguepjop, J.R., Seye, M., Tossim, H.A., et al. (2020). Fine-mapping of a wild genomic region involved in pod and seed size reduction on chromosome A07 in peanut (Arachis hypogaea L.). Genes. 11: 1402. https: //doi.org/10.3390/genes11121402.
  3. Benlloch, R., Roque, E., Ferrándiz, C., Cosson, V., Caballero, T., Penmetsa, R.V., et al (2009). Analysis of B function in legumes: PISTILLATA proteins do not require the PI motif for floral organ development in Medicago truncatula. The Plant Journal. 60: 102-111. 
  4. Berardini, T., Reiser, L., Li, D., Mezheritsky, Y., Muller, R., Strait, E. et al. (2015). The Arabidopsis information resource: Making and mining the gold standard annotated reference plant genoma. Genesis. 53: 474-85.
  5. Bouche, F., Lobet, G., Tocquin, P., Périlleux, C. (2016). FLOR-ID: An interactive database of flowering-time gene networks in Arabidopsis thaliana. Nucleic Acids Research. 44: D1167-D1171. 
  6. Budak, H., Kaya, S.B., Cagirici, H.B. (2020). Long Non-coding RNA in plants in the era of reference sequences. Front. Plant Sci. 11: 276 https: //doi.org/10.3389/fpls.2020.00276.
  7. Byzova, M.V., Franken, J., Aarts, M.G., de Almeida-Engler, J., Engler, G., Mariani, C., et al. (1999). Arabidopsis Stereli Apetala, a multifunctional gene regulating inflorescence, flower and ovule development. Genes Development. 13: 1002-14. 
  8. Cardoso, D., Pennington, R.T., de Queiroz, L.P., Boatwright, J.S., van Wyk, B.E., Wojciechowski, M.F., et al. (2013). Reconstructing the deep-branching relationships of the papilionoid legumes. South African Journal of Botany. 89: 58-75. 
  9. Chanderbali, A.S., Yoo, M.J., Zahn, L.M., Brockington, S.F., Wall, P.K., Gitzendanner, M.A., et al. (2010). Conservation and canalization of gene expression during angiosperm diversification accompany the origin and evolution of the flower. Proceedings of the National Academy of Sciences. 107: 22570-22575. 
  10. Chandler, J.W. (2011). The hormonal regulation of flower development. J. Plant Growth Regul. 30: 242-254. 
  11. Chen, X. (2004). A Micro RNA as a translational repressor of PETALA 2 in arabidopsis flower development. Science. 303: 2022-2025. 
  12. Chi, Y., Huang, F., Liu, H., Yang, S., Yu, D. (2011). An APETALA1- like gene of soybean regulates flowering time and specifies floral organs. Journal of Plant Physiology. 168: 2251-2259. 
  13. Chi, Y., Wang, T., Xu, G., Yang, H., Zeng, X., Shen, Y., et al. (2017). GmAGL1, a MADS-Box gene from soybean, is involved in floral organ identity and fruit dehiscence. Front. Plant Sci. 8: 175 https://doi.org/10.3389/fpls.2017.00175.
  14. Dang, P., Chen, C., Holbrook, C. (2012). Identification of genes encoding drought-induced transcription factors in peanut (Arachis hypogaea L.). Journal of Molecular Biochemistry. 1: 196-205.
  15. Das, A., Saxena, S., Kumar, K., Tribhuvan, K.U., Singh, N.K., Gaikwad, K. (2020). Non-coding RNAs having strong positive interaction with mRNAs reveal their regulatory nature during flowering in a wild relative of pigeonpea (Cajanus scarabaeoides). Molecular Biology Reports. 47: 3305-3317.
  16. Delgado-Benarroch, L., Causier, B., Weiss, J., Egea-Cortines, M. (2009). FORMOSA controls cell division and expansion during floral development in Antirrhinum majus. Planta. 229: 1219-1229. 
  17. Di, C., Yuan, J., Wu, Y., Li, J., Lin, H., Hu, L., et al. (2014). Characterization of stress-responsive lncRNAs in Arabidopsis thaliana by integrating expression, epigenetic and structural features. Plant J. 80: 848-61. 
  18. FAO. (2021). Pulses contribute to Food Security. https://www.fao.org/ documents /card/en/c/97c154e7-45d7-402d-a009-10444ba6745a/.
  19. Glazinska, P., Kulasek, M., Glinkowski, W., Wojciechowski, W., Kosiñski, J. (2019). Integrated analysis of small RNA, transcriptome and degradome sequencing provides new insights into floral development and abscission in yellow lupine (Lupinus luteus L.). Int. J. Mol. Sci. 20: 5122. doi: 10.3390/ijms20205122.
  20. Gou, J., Tang, C., Chen, N., Wang, H., Debnath, S., Sun, L., et al. (2019). SPL7 and SPL8 represent a novel flowering regulation mechanism in switchgrass. New Phytologist. 222: 1610-1623.
  21. Guo, W., Cui, Y., Wang, T., Yu, D., Huang, F. (2017). Functional analysis of flower development related gene GsLFY from Glycine soja. Hereditas. 39: 56-65. 
  22. Hane, J.K., Ming, Y., Kamphuis, L.G., Nelson, M.N., Garg, G., Atkins, C.A., et al. (2017). A comprehensive draft genome sequence for lupin (Lupinus angustifolius), an emerging health food: Insights into plant-microbe interactions and legume evolution. Plant Biotechnology Journal. 15:  318-330. 
  23. Huang, F., Chi, Y., Gai, J., y Yu, D. (2009). Identification of transcription factors predominantly expressed in soybean flowers and characterization of GmSEP1 encoding a SEPALLATA1- like protein. Gene. 438: 40-48. 
  24. Huang, F., Xu, G., Chi, Y., Liu, H., Xue, Q., Zhao, T., et al. (2014). A soybean MADS-box protein modulates floral organ numbers, petal identity and sterility. BMC Plant Biology. 14: 89. https: //doi.org/10.1186/1471-2229-14-89.
  25. Irish, V. (2017) The ABC model of floral development. Curr Biol. 27: R887-R890. 
  26. Jayalaxmi, B., Vijayalakshmi, D., Usha, R., Revanna, M.L., Chandru, R. (2016). Effect of different processing methods on proximate, mineral and antinutrient content of lima bean (Phaseolus lunatus) seeds. Legume Research. (39): 543-549.
  27. Jingjing, J., Peng, L., Yalong, X., Zefeng, L., Shizhou, Y. et al. (2021). PLncDB V2.0: A comprehensive encyclopedia of plant long noncoding RNAs. Nucleic Acids Research. (49): D1489-D1495.
  28. Jung, C.H., Wong, C.E., Singh, M.B., Bhalla, P.L. (2012). Comparative genomic analysis of soybean flowering genes. PLoS ONE. 7: e38250. https://doi.org/10.1371/Journal. pone. 0038250.
  29. Jukanti, A.K., Dagla, H.R., Kalwani, P., Goswami, D., Upendra, J.M., et al. (2017). Grain protein estimation and SDS-page profiling of six important arid legumes. Legume Research. 40: 485-490.
  30. Kassa, M.T., Penmetsa, R.V., Carrasquilla-Garcia, N., Sarma, B.K., Datta, S., Upadhyaya, H.D. et al. (2012). Genetic patterns of domestication in Pigeonpea [Cajanus cajan (L.) Millsp.] and wild cajanus relatives. PLoS ONE. 7: e39563. doi: 10.1371/journal. pone.0039563.
  31. Khoury, C.K., Castañeda-Alvarez, N.P., Achicanoy, H.A., Sosa, C.C., Bernau, V., Kassa, M.T., et al. (2015). Crop wild relatives of pigeonpea [Cajanus cajan (L.) Millsp.]: Distributions, ex situ conservation status and potential genetic resources for abiotic stress tolerance. Biological Conservation. 184: 259-270. 
  32. Klitgaard, B.B. (1999). Floral ontogeny in tribe Dalbergieae (Leguminosae: Papilionoideae): Dalbergia brasiliensis, Machaerium villosum s. l. Platymiscium floribundum and Pterocarpus rotundifolius. Pl. Syst. Evol. 219: 1-25. 
  33. Krishnamurthy, K.V., Bahadur, B. (2015). Genetics of Flower Development. In: Plant Biology and Biotechnology. [Bhadur B., Rajam M.V., Sahijram L., Krishnamurthy K.V., (editors.)] Springer India; New Delhi, India: pp. 385-407.
  34. Kumar, K., Srivastava, H., Das, A., Tribhuvan, K. U., Durgesh, K., Joshi, R., et al. (2021). Identification and characterization of MADS box gene family in pigeonpea for their role during floral transition. 3 Biotech. 11: 108 doi: 10.1007/s13205- 020-02605-7.
  35. Kumar, T., Ajay, Reddy, G.M. (1997). Identification and expression of agamous gene homologue during in vitro flowering from cotyledons of groundnut. Journal of Plant Biochemistry and Biotechnology. 6: 81-84. 
  36. Lavin, M., Herendeen, P.S., Wojciechowski, M.F. (2005). Evolutionary rates analysis of Leguminosae implicates a rapid diversification of lineages during the tertiary. Syst Biol. 54: 575-94.
  37. Li, M., Zhao, S.Z., Zhao, C.Z., Zhang, Y., Xia, H., Lopez-Baltazar, J., et al. (2016). Cloning and characterization of SPL- family genes in the peanut (Arachis hypogaea L.). Genet Mol Res. 15: gmr7344 doi: https://doi.org/10.4238/gmr. 15017344.  
  38. Lichtin, N., Salvo-Garrido, H., Till, B., Caligari, P., Rupayan, A., Westermeyer, F., et al. (2020). Genetic and comparative mapping of Lupinus luteus L. highlight syntenic regions with major orthologous genes controlling anthracnose resistance and flowering time. Scientific Reports. 10: 19174. doi: 10.1038/s41598-020-76197-w.
  39. Lin, Y., Laosatit, K., Chen, J., Yuan, X., Wu, R., Amkul, K., et al. (2020). Mapping and functional characterization of stigma exposed 1, a DUF1005 gene controlling petal and stigma cells in mungbean (Vigna radiata). Frontiers in Plant Science. 11: 575922 https://doi.org/10.3389/fpls.2020.575922.
  40. LPWG. (2017). A new subfamily classification of the leguminosae based on a taxonomically comprehensive phylogeny: The Legume Phylogeny Working Group (LPWG). Taxon. 66: 44-77
  41. Luo, Y., Guo, Z., Li, L. (2013). Evolutionary conservation of microRNA regulatory programs in plant flower development. Dev Biol. 380: 133-44.
  42. Lyngdoh, Y.A., Thapa, U., Shadap, A., Singh, J. and Tomar, B.S. (2018). Studies on genetic variability and character association for yield and yield related traits in french bean (Phaseolus vulgaris L.). Legume Research. 41: 810-815.
  43. Machado, F.B., Moharana, K.C., Almeida Silva, F., Gazara, R.K., Pedrosa Silva, F., Coelho, F. S., et al. (2020). Systematic analysis of 1298 RNA Seq samples and construction of a comprehensive soybean (Glycine max) expression atlas. The Plant Journal. 103: 1894-1909.
  44. Marín, E., Jouannet, V., Herz, A., Lokerse, A.S., Weijers, D., Vaucheret, H., et al. (2010). miR390, Arabidopsis TAS3 tasiRNAs and their auxin response factor targets define an autoregulatory network quantitatively regulating lateral root growth. Plant Cell. 22: 1104-17.
  45. Mei, Y., Sharma, K.K., Anjaiah, V., Shuang-ling, L., Hai-teng, T., Yan, R., et al. (2005). An effective method for cloning of partial MADS-box genes related to flower development in groundnut. IAN. 25: 30-32.
  46. Mergner, J., Frejno, M., List, M., Papacek, M., Chen, X., Chaudhary, A., et al. (2020). Mass-spectrometry-based draft of the Arabidopsis proteome. Nature. 579: 409-414. 
  47. Nelson, M.N., Ksia̧żkiewicz, M., Rychel, S., Besharat, N., Taylor, C.M., Wyrwa, K., et al. (2017). The loss of vernalization requirement in narrow-leafed lupin is associated with a deletion in the promoter and de-repressed expression of a flowering locus T (FT) homologue. New Phytol. 213: 220-232. 
  48. Ordidge, M., Chiurugwi, T., Tooke, F., Battey, N.H. (2005). Leafy, terminal flower1 and agamous are functionally conserved but do not regulate terminal flowering and floral determinacy in Impatiens balsamina. The Plant Journal. 44: 985-1000. 
  49. Pawar, R. and Rana, V.S. (2019). Manipulation of source-sink relationship in pertinence to better fruit quality and yield in fruit crops: a review. Agricultural Reviews. 40: 200-207.
  50. Prenner, G., Bateman, R.M., Rudall, P.J. (2010). Floral formulae updated for routine inclusion in formal taxonomic descriptions. Taxon. 59: 241-250. 
  51. Rahmati, I.M., Brown, E., Weigand, C., Tillett, R.L., Schlauch, K.A., Miller. G., et al. (2018). A comparison of heat-stress transcriptome changes between wild-type Arabidopsis pollen and a heat-sensitive mutant harboring a knockout of cyclic nucleotide-gated cation channel 16 (cngc16). BMC Genomics. 19: 549. doi: 10.1186/s12864-018-4930-4.
  52. Rychel-Bielska, S., Surma, A., Bielski, W., Kozak, B., Galek, R., Ksi¹¿kiewicz, M. (2021). Quantitative control of early flowering in white lupin (Lupinus albus L.). Int. J. Mol. Sci. 22: 3856. doi: 10.3390/ijms22083856.
  53. Soltis, D.E., Chanderbali, A.S., Kim, S., Buzgo, M., Soltis, P.S. (2007). The ABC model and its applicability to basal angiosperms. Annals of Botany. 100: 155-163. 
  54. Song, J., Clemens, J., Jameson, P.E. (2008). Quantitative expression analysis of the ABC genes in Sophora tetraptera, a woody legume with an unusual sequence of floral organ development. Journal of Experimental Botany. 59: 247-259. 
  55. Sullivan, A., Purohit, P.K., Freese, N.H., Pasha, A., Esteban, E., Waese, J., et al. (2019). An ‘eFP-Seq Browser’ for visualizing and exploring RNA sequencing data. The Plant Journal: For Cell and Molecular Biology. 100: 641-654. 
  56. Taylor, C.M., Kamphuis, L.G., Zhang, W., Garg, G., Berger, J.D., Mousavi-Derazmahalleh, M., et al. (2019). INDEL variation in the regulatory region of the major flowering time gene LanFTc1 is associated with vernalization response and flowering time in narrow-leafed lupin (Lupinus angustifolius L.). Plant Cell Environ. 42: 174-187.
  57. Theißen, G., Melzer, R., Rümpler, F. (2016). MADS-domain transcription factors and the floral quartet model of flower development: Linking Plant Development and Evolution. Development. 143: 3259-3271. 
  58. Torti, S., Fornara, F. (2012). AGL24 acts in concert with SOC1 and FUL during Arabidopsis floral transition. Plant Signaling and Behavior. 7: 1251-1254. 
  59. Tucker, S.C. (2006). Floral ontogeny of Hardenbergia violacea (Fabaceae: Faboideae: Phaseoleae) and taxa of tribes bossiaeeae and mirbelieae, with emphasis on presence of pseudoraceme inflorescences. Australian Systematic Botany. 19: 193-210. 
  60. Vasquez-Regalado, J. (2021). Genomica Comparativa De Las Rutas De Floración En Fabaceas De Interes Economico Y Su Uso En El Mejoramiento Genético. Thesis, Universidad Nacional Agraria La Molina, Lima, Peru. http:// repositorio.lamolina.edu.pe/handle/20.500.12996/5166.
  61. Weller, J.L. and Macknight, R.C. (2018). Functional genomics and flowering time in Medicago truncatula: An overview. Methods Mol. Biol. 1822: 261-271.
  62. Wu, H.W., Deng, S., Xu, H., Mao, H.Z., Liu, J., Niu, Q.W., et al. (2018). A noncoding RNA transcribed from the Agamous (AG) second intron binds to curly leaf and represses AG expression in leaves. New Phytol. 219: 1480-1491. 
  63. Yamaguchi, A., Abe, M. (2012). Regulation of reproductive development by non-coding RNA in Arabidopsis: To flower or not to flower. J. Plant Res. 125: 693-704. 
  64. Yang, S., Li, L., Zhang, J., Geng, Y., Guo, F., Wang, J., et al. (2017). Transcriptome and differential expression profiling analysis of the mechanism of Ca2+ regulation in peanut (Arachis hypogaea) pod development. Frontiers in Plant Science. 8: 1609. https://doi.org/10.3389/fpls.2017.01609.
  65. Zhao, J., Chen, L., Zhao, T., Gai, J. (2017). Chicken toes-like leaf and petalody flower (CTP) is a novel regulator that controls leaf and flower development in soybean. Journal of Experimental Botany. 68: 5565-5581.

Global Footprints