- Alvarez-Buylla, E.R., Benítez, M., Corvera-Poiré, A., Cador, A.C., Folter, S.D., Buen, A.G.D. et al. (2010). Flower Development. The Arabidopsis Book. 8: e0127. DOI: 10.1199/tab.0127.
- Alyr, M.H., Pallu, J., Sambou, A., Nguepjop, J.R., Seye, M., Tossim, H.A., et al. (2020). Fine-mapping of a wild genomic region involved in pod and seed size reduction on chromosome A07 in peanut (Arachis hypogaea L.). Genes. 11: 1402. https: //doi.org/10.3390/genes11121402.
- Benlloch, R., Roque, E., Ferrándiz, C., Cosson, V., Caballero, T., Penmetsa, R.V., et al (2009). Analysis of B function in legumes: PISTILLATA proteins do not require the PI motif for floral organ development in Medicago truncatula. The Plant Journal. 60: 102-111.
- Berardini, T., Reiser, L., Li, D., Mezheritsky, Y., Muller, R., Strait, E. et al. (2015). The Arabidopsis information resource: Making and mining the gold standard annotated reference plant genoma. Genesis. 53: 474-85.
- Bouche, F., Lobet, G., Tocquin, P., Périlleux, C. (2016). FLOR-ID: An interactive database of flowering-time gene networks in Arabidopsis thaliana. Nucleic Acids Research. 44: D1167-D1171.
- Budak, H., Kaya, S.B., Cagirici, H.B. (2020). Long Non-coding RNA in plants in the era of reference sequences. Front. Plant Sci. 11: 276 https: //doi.org/10.3389/fpls.2020.00276.
- Byzova, M.V., Franken, J., Aarts, M.G., de Almeida-Engler, J., Engler, G., Mariani, C., et al. (1999). Arabidopsis Stereli Apetala, a multifunctional gene regulating inflorescence, flower and ovule development. Genes Development. 13: 1002-14.
- Cardoso, D., Pennington, R.T., de Queiroz, L.P., Boatwright, J.S., van Wyk, B.E., Wojciechowski, M.F., et al. (2013). Reconstructing the deep-branching relationships of the papilionoid legumes. South African Journal of Botany. 89: 58-75.
- Chanderbali, A.S., Yoo, M.J., Zahn, L.M., Brockington, S.F., Wall, P.K., Gitzendanner, M.A., et al. (2010). Conservation and canalization of gene expression during angiosperm diversification accompany the origin and evolution of the flower. Proceedings of the National Academy of Sciences. 107: 22570-22575.
- Chandler, J.W. (2011). The hormonal regulation of flower development. J. Plant Growth Regul. 30: 242-254.
- Chen, X. (2004). A Micro RNA as a translational repressor of PETALA 2 in arabidopsis flower development. Science. 303: 2022-2025.
- Chi, Y., Huang, F., Liu, H., Yang, S., Yu, D. (2011). An APETALA1- like gene of soybean regulates flowering time and specifies floral organs. Journal of Plant Physiology. 168: 2251-2259.
- Chi, Y., Wang, T., Xu, G., Yang, H., Zeng, X., Shen, Y., et al. (2017). GmAGL1, a MADS-Box gene from soybean, is involved in floral organ identity and fruit dehiscence. Front. Plant Sci. 8: 175 https://doi.org/10.3389/fpls.2017.00175.
- Dang, P., Chen, C., Holbrook, C. (2012). Identification of genes encoding drought-induced transcription factors in peanut (Arachis hypogaea L.). Journal of Molecular Biochemistry. 1: 196-205.
- Das, A., Saxena, S., Kumar, K., Tribhuvan, K.U., Singh, N.K., Gaikwad, K. (2020). Non-coding RNAs having strong positive interaction with mRNAs reveal their regulatory nature during flowering in a wild relative of pigeonpea (Cajanus scarabaeoides). Molecular Biology Reports. 47: 3305-3317.
- Delgado-Benarroch, L., Causier, B., Weiss, J., Egea-Cortines, M. (2009). FORMOSA controls cell division and expansion during floral development in Antirrhinum majus. Planta. 229: 1219-1229.
- Di, C., Yuan, J., Wu, Y., Li, J., Lin, H., Hu, L., et al. (2014). Characterization of stress-responsive lncRNAs in Arabidopsis thaliana by integrating expression, epigenetic and structural features. Plant J. 80: 848-61.
- FAO. (2021). Pulses contribute to Food Security. https://www.fao.org/ documents /card/en/c/97c154e7-45d7-402d-a009-10444ba6745a/.
- Glazinska, P., Kulasek, M., Glinkowski, W., Wojciechowski, W., Kosiñski, J. (2019). Integrated analysis of small RNA, transcriptome and degradome sequencing provides new insights into floral development and abscission in yellow lupine (Lupinus luteus L.). Int. J. Mol. Sci. 20: 5122. doi: 10.3390/ijms20205122.
- Gou, J., Tang, C., Chen, N., Wang, H., Debnath, S., Sun, L., et al. (2019). SPL7 and SPL8 represent a novel flowering regulation mechanism in switchgrass. New Phytologist. 222: 1610-1623.
- Guo, W., Cui, Y., Wang, T., Yu, D., Huang, F. (2017). Functional analysis of flower development related gene GsLFY from Glycine soja. Hereditas. 39: 56-65.
- Hane, J.K., Ming, Y., Kamphuis, L.G., Nelson, M.N., Garg, G., Atkins, C.A., et al. (2017). A comprehensive draft genome sequence for lupin (Lupinus angustifolius), an emerging health food: Insights into plant-microbe interactions and legume evolution. Plant Biotechnology Journal. 15: 318-330.
- Huang, F., Chi, Y., Gai, J., y Yu, D. (2009). Identification of transcription factors predominantly expressed in soybean flowers and characterization of GmSEP1 encoding a SEPALLATA1- like protein. Gene. 438: 40-48.
- Huang, F., Xu, G., Chi, Y., Liu, H., Xue, Q., Zhao, T., et al. (2014). A soybean MADS-box protein modulates floral organ numbers, petal identity and sterility. BMC Plant Biology. 14: 89. https: //doi.org/10.1186/1471-2229-14-89.
- Irish, V. (2017) The ABC model of floral development. Curr Biol. 27: R887-R890.
- Jayalaxmi, B., Vijayalakshmi, D., Usha, R., Revanna, M.L., Chandru, R. (2016). Effect of different processing methods on proximate, mineral and antinutrient content of lima bean (Phaseolus lunatus) seeds. Legume Research. (39): 543-549.
- Jingjing, J., Peng, L., Yalong, X., Zefeng, L., Shizhou, Y. et al. (2021). PLncDB V2.0: A comprehensive encyclopedia of plant long noncoding RNAs. Nucleic Acids Research. (49): D1489-D1495.
- Jung, C.H., Wong, C.E., Singh, M.B., Bhalla, P.L. (2012). Comparative genomic analysis of soybean flowering genes. PLoS ONE. 7: e38250. https://doi.org/10.1371/Journal. pone. 0038250.
- Jukanti, A.K., Dagla, H.R., Kalwani, P., Goswami, D., Upendra, J.M., et al. (2017). Grain protein estimation and SDS-page profiling of six important arid legumes. Legume Research. 40: 485-490.
- Kassa, M.T., Penmetsa, R.V., Carrasquilla-Garcia, N., Sarma, B.K., Datta, S., Upadhyaya, H.D. et al. (2012). Genetic patterns of domestication in Pigeonpea [Cajanus cajan (L.) Millsp.] and wild cajanus relatives. PLoS ONE. 7: e39563. doi: 10.1371/journal. pone.0039563.
- Khoury, C.K., Castañeda-Alvarez, N.P., Achicanoy, H.A., Sosa, C.C., Bernau, V., Kassa, M.T., et al. (2015). Crop wild relatives of pigeonpea [Cajanus cajan (L.) Millsp.]: Distributions, ex situ conservation status and potential genetic resources for abiotic stress tolerance. Biological Conservation. 184: 259-270.
- Klitgaard, B.B. (1999). Floral ontogeny in tribe Dalbergieae (Leguminosae: Papilionoideae): Dalbergia brasiliensis, Machaerium villosum s. l. Platymiscium floribundum and Pterocarpus rotundifolius. Pl. Syst. Evol. 219: 1-25.
- Krishnamurthy, K.V., Bahadur, B. (2015). Genetics of Flower Development. In: Plant Biology and Biotechnology. [Bhadur B., Rajam M.V., Sahijram L., Krishnamurthy K.V., (editors.)] Springer India; New Delhi, India: pp. 385-407.
- Kumar, K., Srivastava, H., Das, A., Tribhuvan, K. U., Durgesh, K., Joshi, R., et al. (2021). Identification and characterization of MADS box gene family in pigeonpea for their role during floral transition. 3 Biotech. 11: 108 doi: 10.1007/s13205- 020-02605-7.
- Kumar, T., Ajay, Reddy, G.M. (1997). Identification and expression of agamous gene homologue during in vitro flowering from cotyledons of groundnut. Journal of Plant Biochemistry and Biotechnology. 6: 81-84.
- Lavin, M., Herendeen, P.S., Wojciechowski, M.F. (2005). Evolutionary rates analysis of Leguminosae implicates a rapid diversification of lineages during the tertiary. Syst Biol. 54: 575-94.
- Li, M., Zhao, S.Z., Zhao, C.Z., Zhang, Y., Xia, H., Lopez-Baltazar, J., et al. (2016). Cloning and characterization of SPL- family genes in the peanut (Arachis hypogaea L.). Genet Mol Res. 15: gmr7344 doi: https://doi.org/10.4238/gmr. 15017344.
- Lichtin, N., Salvo-Garrido, H., Till, B., Caligari, P., Rupayan, A., Westermeyer, F., et al. (2020). Genetic and comparative mapping of Lupinus luteus L. highlight syntenic regions with major orthologous genes controlling anthracnose resistance and flowering time. Scientific Reports. 10: 19174. doi: 10.1038/s41598-020-76197-w.
- Lin, Y., Laosatit, K., Chen, J., Yuan, X., Wu, R., Amkul, K., et al. (2020). Mapping and functional characterization of stigma exposed 1, a DUF1005 gene controlling petal and stigma cells in mungbean (Vigna radiata). Frontiers in Plant Science. 11: 575922 https://doi.org/10.3389/fpls.2020.575922.
- LPWG. (2017). A new subfamily classification of the leguminosae based on a taxonomically comprehensive phylogeny: The Legume Phylogeny Working Group (LPWG). Taxon. 66: 44-77
- Luo, Y., Guo, Z., Li, L. (2013). Evolutionary conservation of microRNA regulatory programs in plant flower development. Dev Biol. 380: 133-44.
- Lyngdoh, Y.A., Thapa, U., Shadap, A., Singh, J. and Tomar, B.S. (2018). Studies on genetic variability and character association for yield and yield related traits in french bean (Phaseolus vulgaris L.). Legume Research. 41: 810-815.
- Machado, F.B., Moharana, K.C., Almeida Silva, F., Gazara, R.K., Pedrosa Silva, F., Coelho, F. S., et al. (2020). Systematic analysis of 1298 RNA Seq samples and construction of a comprehensive soybean (Glycine max) expression atlas. The Plant Journal. 103: 1894-1909.
- Marín, E., Jouannet, V., Herz, A., Lokerse, A.S., Weijers, D., Vaucheret, H., et al. (2010). miR390, Arabidopsis TAS3 tasiRNAs and their auxin response factor targets define an autoregulatory network quantitatively regulating lateral root growth. Plant Cell. 22: 1104-17.
- Mei, Y., Sharma, K.K., Anjaiah, V., Shuang-ling, L., Hai-teng, T., Yan, R., et al. (2005). An effective method for cloning of partial MADS-box genes related to flower development in groundnut. IAN. 25: 30-32.
- Mergner, J., Frejno, M., List, M., Papacek, M., Chen, X., Chaudhary, A., et al. (2020). Mass-spectrometry-based draft of the Arabidopsis proteome. Nature. 579: 409-414.
- Nelson, M.N., Ksia̧żkiewicz, M., Rychel, S., Besharat, N., Taylor, C.M., Wyrwa, K., et al. (2017). The loss of vernalization requirement in narrow-leafed lupin is associated with a deletion in the promoter and de-repressed expression of a flowering locus T (FT) homologue. New Phytol. 213: 220-232.
- Ordidge, M., Chiurugwi, T., Tooke, F., Battey, N.H. (2005). Leafy, terminal flower1 and agamous are functionally conserved but do not regulate terminal flowering and floral determinacy in Impatiens balsamina. The Plant Journal. 44: 985-1000.
- Pawar, R. and Rana, V.S. (2019). Manipulation of source-sink relationship in pertinence to better fruit quality and yield in fruit crops: a review. Agricultural Reviews. 40: 200-207.
- Prenner, G., Bateman, R.M., Rudall, P.J. (2010). Floral formulae updated for routine inclusion in formal taxonomic descriptions. Taxon. 59: 241-250.
- Rahmati, I.M., Brown, E., Weigand, C., Tillett, R.L., Schlauch, K.A., Miller. G., et al. (2018). A comparison of heat-stress transcriptome changes between wild-type Arabidopsis pollen and a heat-sensitive mutant harboring a knockout of cyclic nucleotide-gated cation channel 16 (cngc16). BMC Genomics. 19: 549. doi: 10.1186/s12864-018-4930-4.
- Rychel-Bielska, S., Surma, A., Bielski, W., Kozak, B., Galek, R., Ksi¹¿kiewicz, M. (2021). Quantitative control of early flowering in white lupin (Lupinus albus L.). Int. J. Mol. Sci. 22: 3856. doi: 10.3390/ijms22083856.
- Soltis, D.E., Chanderbali, A.S., Kim, S., Buzgo, M., Soltis, P.S. (2007). The ABC model and its applicability to basal angiosperms. Annals of Botany. 100: 155-163.
- Song, J., Clemens, J., Jameson, P.E. (2008). Quantitative expression analysis of the ABC genes in Sophora tetraptera, a woody legume with an unusual sequence of floral organ development. Journal of Experimental Botany. 59: 247-259.
- Sullivan, A., Purohit, P.K., Freese, N.H., Pasha, A., Esteban, E., Waese, J., et al. (2019). An ‘eFP-Seq Browser’ for visualizing and exploring RNA sequencing data. The Plant Journal: For Cell and Molecular Biology. 100: 641-654.
- Taylor, C.M., Kamphuis, L.G., Zhang, W., Garg, G., Berger, J.D., Mousavi-Derazmahalleh, M., et al. (2019). INDEL variation in the regulatory region of the major flowering time gene LanFTc1 is associated with vernalization response and flowering time in narrow-leafed lupin (Lupinus angustifolius L.). Plant Cell Environ. 42: 174-187.
- Theißen, G., Melzer, R., Rümpler, F. (2016). MADS-domain transcription factors and the floral quartet model of flower development: Linking Plant Development and Evolution. Development. 143: 3259-3271.
- Torti, S., Fornara, F. (2012). AGL24 acts in concert with SOC1 and FUL during Arabidopsis floral transition. Plant Signaling and Behavior. 7: 1251-1254.
- Tucker, S.C. (2006). Floral ontogeny of Hardenbergia violacea (Fabaceae: Faboideae: Phaseoleae) and taxa of tribes bossiaeeae and mirbelieae, with emphasis on presence of pseudoraceme inflorescences. Australian Systematic Botany. 19: 193-210.
- Vasquez-Regalado, J. (2021). Genomica Comparativa De Las Rutas De Floración En Fabaceas De Interes Economico Y Su Uso En El Mejoramiento Genético. Thesis, Universidad Nacional Agraria La Molina, Lima, Peru. http:// repositorio.lamolina.edu.pe/handle/20.500.12996/5166.
- Weller, J.L. and Macknight, R.C. (2018). Functional genomics and flowering time in Medicago truncatula: An overview. Methods Mol. Biol. 1822: 261-271.
- Wu, H.W., Deng, S., Xu, H., Mao, H.Z., Liu, J., Niu, Q.W., et al. (2018). A noncoding RNA transcribed from the Agamous (AG) second intron binds to curly leaf and represses AG expression in leaves. New Phytol. 219: 1480-1491.
- Yamaguchi, A., Abe, M. (2012). Regulation of reproductive development by non-coding RNA in Arabidopsis: To flower or not to flower. J. Plant Res. 125: 693-704.
- Yang, S., Li, L., Zhang, J., Geng, Y., Guo, F., Wang, J., et al. (2017). Transcriptome and differential expression profiling analysis of the mechanism of Ca2+ regulation in peanut (Arachis hypogaea) pod development. Frontiers in Plant Science. 8: 1609. https://doi.org/10.3389/fpls.2017.01609.
- Zhao, J., Chen, L., Zhao, T., Gai, J. (2017). Chicken toes-like leaf and petalody flower (CTP) is a novel regulator that controls leaf and flower development in soybean. Journal of Experimental Botany. 68: 5565-5581.
Submitted Date : 21-04-2022
Accepted Date : 19-07-2022
First Online: