Morpho-Physiological responses of common bean (Phaseolus vulgaris L.) cultivars to drought stress

DOI: 10.18805/LR-429    | Article Id: LR-429 | Page : 505-511
Citation :- Morpho-Physiological responses of common bean (Phaseolus vulgaris L.) cultivars to drought stress.Legume Research-An International Journal.2019.(42):505-511
Sultan Kiymaz and Ramazan Beyaz sultan.kiymaz@gmail.com
Address : Kirsehir Ahi Evran University, Agriculture Faculty, Department of Biosystems Engineering, Kirsehir, Turkey.
Submitted Date : 9-05-2018
Accepted Date : 25-01-2019

Abstract

Common bean (P. vulgaris L.) is the most important food legume in the diet of people and drought stress causes severe yield loss in this crop. This study was conducted to investigate morpho-physiological responses, yield and WUE of four common bean (P. vulgaris L.) cultivars (namely : “Sarikiz”, “Sazova”, “Kirk günlük”, and “Gina”) under different (I1.00: 100%-control of field capacity, I0.75: 75% of field capacity and I0.50: 50% of field capacity) water regimes. The investigation was conducted in a pots and experiments were carried out randomized plot design with ten replicates. The results of this investigation show that yield, yield components, LRWC, leaf area and chlorophyll contents were reduced, while WUE increase depending on the different water regimes in all cultivars. Consequently, cv. “Gina” may have the potential to be used in drought areas.

Keywords

Common bean Drought Water use efficiency Yield Yield compenents

References

  1. Aydogan, M., Demiriürek, K. and Abaci, N.I. (2015). Türkiye’de Kuru Fasulye Üretiminin Mevcut Durumu ve Gelecek Dönemler Üretiminin Tahmin Edilmesi. Turk. Tarým Gýda Bilim Teknol. Derg., 3-12: 962-968.
  2. Beebe, S.E., Rao, I.M., Cajiao, C and, Grajales, M. (2008). Selection for drought resistance in common bean also improves yield in phosphorus limited and favorable environments. Crop Sci., 48:582-592.
  3. Birch, C.J., Vos, J. and van der Putten, P.E.L. (2003). Plant development and leaf area production in contrasting cultivars of maize grown in a cool temperate environment in the field. Eur. J. Agron.,19:173-188.
  4. Broughton W. J., Hernández G., Blair M. (2003). Beans (Phaseolus spp.) model food legumes. Plant Soil, 252:55-128.
  5. Curtis, O.F. and Shetty, K. (1996). Growth medium effects on vitrification, total phenolics, chlorophyll, and water content of in vitro propagated oregano clones. Acta Hortic., 426:498-503.
  6. De Azevedo, B.M., Do Bomfým, G.V., Do Nascimento Neto, J.R., De Araújo Viana, T.V. and Vasconcelos D.V. (2016). Irrigation depths and yield response factor in the productive phase of yellow melon. Rev. Bras. Frutic., Jaboticabal, 38(4):1-13.
  7. de Carvalho, D.F., de Doliveira Neto, D.H., Felix, L.F., Marinho Guerra, J.G. and Salvador, C.A. (2016). Yield, water use efficiency, and yield response factor in carrot crop under different irrigation depths. Ciência Rural, Santa Maria, 46(7):1145-1150.
  8. de Costa, W.A.J.M. and Ariyawansha, B.D.S.K. (1996). Effects of water stress on water use efficeincy of different varities of common bean (Phaseolus vulgaris L.). J. Natn. Sci. Coun. Srilenka,24(4):253-266.
  9. Doorenbos, J. and Kassam A.H. (1986). Yield response to water. Irrigation and Drainage Paper No: 33 FAO, Rome, 193 p.
  10. Howell, T.A., Cuenca, R.H. and Solomon, K.H. (1990). Crop yield response. Managementof farm irrigation systems. (Ed. Hoffman et al.). ASAE 312.
  11. Keyvan, S. (2010). The effects of drought stress on yield, relative water content, proline, soluble carbohydrates and chlorophyll of bread wheat cultivars. J. Anim. Plant Sci., 8(3):1051-1060.
  12. Kiymaz, S. and Ertek, A. (2015). Water use and yield of sugar beet (Beta vulgaris L.) under drip irrigation at different water regimes. Agric Water Manag, 158:225-234.
  13. Mafakheri, A., Siosemardeh, A., Bahramnejad, B.P.C., Sohrabi, Y. (2010). Effect of drought stress on yield, proline and chlorophyll contents in three chickpea cultivars. Australian Journal of Crop Science, 4(8):580-585.
  14. Makbul, S., N.S. Guler, Durmus, N. and Guven, S.(2011). Changes in anatomical and physiological parameters of soybean under drought stress. Turk J. Bot.,35: 369-377.
  15. Mansour, E., Abdul-Hamid, M.I., Yasin, M.T., Qabil, N. and Attia, A.(2017). Identifying drought-tolerant genotypes of barley and their responses to various irrigation levels in a Mediterranean environment. Agric Water Manag,194, 58-67. 
  16. Önder, M., Kahraman, A. and Ceyhan, E. (2014). Response of dry bean (Phaseolus vulgaris L.) genotypes to water shortage. Turkish Journal of Agricultural and Natural Sciences,Special Issue: 1.
  17. Ritchie, S.W., Nguyan, H.T. and Holaday, A.S.(1990). Leaf water content and gas exchange parameters of two wheat genotypes differing in drought resistance. Crop sci., 30:105-111.
  18. Sehirali, S., Erdem, T., Erdem, Y. and Kenar D., (2005). Damla Sulama Yöntemi ile Sulanan Fasulyenin (Phaseolus vulgaris L.) Su Kullanim Özellikleri. Journal of Agricultural Sciences., 11-2:212-216.
  19. Simsek, M., Boydak, E. Gerçek, S. and Kirnak, H. (2001). Harran Ovasý Kosullarýnda Farkli Sulama ve Sira araliklarinda Yagmurlama- Damla Sulama Yöntemleriyle Sulanan Soya Fasulyesinin Su Verim iliskisinin Saptanmasi. Journal of Agricultural Sciences of Ankara University., 3:88-93.
  20. Songsri, P., Jogloy, S., Holbrook, C.C., Kesmala, T., Vorasoot, N., Akkasaeng, C. and Patanothai, A. (2009). Association of root, specific leaf area and SPAD chlorophyll meter reading to water use efficiency of peanut under different available soil water. Agric Water Manag, 96:790-798.
  21. Stewart, J.I., Danielson, R.E., Hanks, R.J. and Jackson, E.B.(1977). Optimizing Crop Production through Control of Water and Salinity Levels in the Soil. Utah Water Res. Lab. Publ. No: PRWG 151-1, Logan, 191p. 
  22. Turner, N. C. (1981). Techniques and experimental approaches for the measurement of plant water stress. Plant Soil, 58:339-366. 

Global Footprints