Legume Research

  • Chief EditorJ. S. Sandhu

  • Print ISSN 0250-5371

  • Online ISSN 0976-0571

  • NAAS Rating 6.80

  • SJR 0.391

  • Impact Factor 0.8 (2023)

Frequency :
Monthly (January, February, March, April, May, June, July, August, September, October, November and December)
Indexing Services :
BIOSIS Preview, ISI Citation Index, Biological Abstracts, Elsevier (Scopus and Embase), AGRICOLA, Google Scholar, CrossRef, CAB Abstracting Journals, Chemical Abstracts, Indian Science Abstracts, EBSCO Indexing Services, Index Copernicus
Legume Research, volume 42 issue 3 (june 2019) : 405-410

Genetic diversity of groundnut rhizosphere antagonistic bacteria and biological control of groundnut wilted diseases in central Vietnam

C.N. Le, T.H. Thai, D.H. Tran, T.L. Nguyen, T.T.H. La, X.V. Nguyen
1Faculty of Agronomy, University of Agriculture and Forestry (HUAF), Hue University, 102 Phung Hung – Hue – Vietnam
  • Submitted01-05-2018|

  • Accepted12-07-2018|

  • First Online 23-08-2018|

  • doi 10.18805/LR-427

Cite article:- Le C.N., Thai T.H., Tran D.H., Nguyen T.L., La T.T.H., Nguyen X.V. (2018). Genetic diversity of groundnut rhizosphere antagonistic bacteria and biological control of groundnut wilted diseases in central Vietnam. Legume Research. 42(3): 405-410. doi: 10.18805/LR-427.
Stem rot of groundnut caused by Sclerotium rolfsii, seriously damages groundnut production in central Vietnam. Biological control is a promising strategy for sustainable groundnut cultivation. In this study, indigenous bacteria were isolated from the rhizosphere of groundnut and tested for fungal inhibition against S. rolfsii in vitro and disease control under net house condition. Genetic diversity of isolated bacterial population was evaluated by BOX-PCR and 16S rDNA sequences. Bacterial strains that showed high disease control in net house were evaluated under natural conditions in farmer fields. The antifungal mechanism of the best bacterial strain was identified. Results of the study showed that the antagonistic bacterial population in groundnut rhizosphere is separated in three bacterial genera including Bacillus, Pseudomonas and Burkholderia. One bacterial strain which produces 2,4-DAPG reduced stem rot of groundnut caused by S. rolfsii and increased yield from 20.3 to 26.3% compared to the control.
  1. Abeysinghe, S. (2009). The effect of mode of application of Bacillus subtilis CA32r on control of Sclerotium rolfsii on Capsicum annuum. Archives of Phytopathology and Plant Protection 42: 835-846.
  2. Anonymous (2012). All India Coordinated Research Project on Groundnut Reports. Directorate of Groundnut research, Junagadh. 
  3. Baird, R. E., Brenneman, T. B., Bell, D. K., and Murphy, A. P. (1991). The effects of the fungicide propiconazole (tilt) on the groundnut shell mycobiota. Mycological Research 95: 571-576.
  4. Brucker, R. M., Baylor, C. M., Walters, R. L., Lauer, A., Harris, R. N., and Minbiole, K. P. C. (2008). The identification of 2,4-    diacetylphloroglucinol as an antifungal metabolite produced by cutaneous bacteria of the Salamander Plethodon cinereus. Journal of Chemical Ecology 34: 39-43.
  5. Culbreath, A. K., Brenneman, T. B., Kemerait Jr, R. C., and Hammes, G. G. (2009). Effect of the new pyrazole carboxamide fungicide penthiopyrad on late leaf spot and stem rot of peanut. Pest Management Science 65: 66-73.
  6. Dennis, J. J., and Zylstra, G. J. (1998). Plasposons: Modular self-cloning minitransposon derivatives for rapid genetic analysis of gram-negative bacterial genomes. Applied and Environmental Microbiology 64: 2710-2715.
  7. FAO (2017). Online publication.
  8. Fernando, W. G. D., Nakkeeran, S., Zhang, Y., and Savchuk, S. (2007). Biological control of Sclerotinia sclerotiorum (Lib.) de Bary by +Peudomonas and Bacillus species on canola petals. Crop Protection 26: 100-107.
  9. Franke, M. D., Brenneman, T. B., Stevenson, K. L., and Padgett, G. B. (1998). Sensitivity of isolates of Sclerotium rolfsii from peanut in Georgia to selected fungicides. Plant Disease 82: 578-583.
  10. Fuller, M. S., Roberson, R. W., and Gisi, U. (1990). Effects of the sterol demethylase inhibitor, cyproconazole, on hyphal tip cells of Sclerotium rolfsii: III. Cell wall cytochemistry. Pesticide Biochemistry and Physiology 36: 115-126.
  11. Ganesan, S., Kuppusamy, R., and Sekar, R. (2007). Integrated management of stem rot disease (Sclerotium rolfsii) of groundnut (Arachis hypogaea L.) using Rhizobium and Trichoderma harzianum (ITCC-4572). Turkish Journal of Agriculture & Forestry 31: 103-108.
  12. Ghasemi, M., Mousanejad, S., and Mehdipour Moghaddam, M. J. (2017). Efficacy of peanut root nodulating symbiotic bacteria in controlling white stem rot. Journal of Crop Protection 6: 191-205.
  13. Grichar, W. J. (1995). Management of stem rot of peanuts (Arachis hypogaea) caused by Sclerotium rolfsii with fungicides. Crop Protection 14: 111-115.
  14. Iquebal, M. A., Tomar, R. S., Parakhia, M. V., Singla, D., Jaiswal, S., Rathod, V. M., Padhiyar, S. M., Kumar, N., Rai, A., and Kumar, D. (2017). Draft whole genome sequence of groundnut stem rot fungus Athelia rolfsii revealing genetic architect of its pathogenicity and virulence. Scientific Reports 7: 017-05478.
  15. Jadon, K. S., P. Thirumalaisamy, P., G. Koradia, V., and D. Padavi, R. (2018). Management of peanut (Arachis hypogaea L.) diseases through nutrient supplements. Legume Research 41: 316-321.
  16. Karthikeyan, V., Sankaralingam, A., and Nakkeeran, S. (2006). Biological control of groundnut stem rot caused by Sclerotium rolfsii (Sacc.). Archives of Phytopathology and Plant Protection 39: 239-246.
  17. Kruijt, M., Tran, H., and Raaijmakers, J. M. (2009). Functional, genetic and chemical characterization of biosurfactants produced by plant growth-promoting Pseudomonas putida 267. Journal of Applied Microbiology 107: 546-556.
  18. Le, C. N., Hoang, T. K., Thai, T. H., Tran, T. L., Phan, T. P. N., and Raaijmakers, J. M. (2018). Isolation, characterization and comparative analysis of plant-associated bacteria for suppression of soil-borne diseases of field-grown groundnut in Vietnam. Biological Control 121: 256-262.
  19. Le, C. N., Kruijt, M., and Raaijmakers, J. M. (2012). Involvement of phenazines and lipopeptides in interactions between Pseudomonas species and Sclerotium rolfsii, causal agent of stem rot disease on groundnut. Journal of Applied Microbiology 112: 390-403.
  20. Le, C. N., Mendes, R., Kruijt, M., and Raaijmakers, J. M. (2011). Genetic and phenotypic diversity of Sclerotium rolfsii in groundnut fields in Central Vietnam. Plant Disease 96: 389-397.
  21. Mayee, C. D., and Datar, V. V. (1988). Diseases of groundnut in the tropics. Review of Tropical Plant Pathology 5: 85-116.
  22. Martins, M. V. V., Silveira, S. F., Mussi-Dias, V., and Vieira, H. D. (2010). Effect of the temperature and substrate moisture on the viability of Sclerotium rolfsii. Acta Scientiarum-Agronomy 32: 217-222.
  23. Murugalakshmi, C. N., Anand, R., and Bhuvaneswari, K. (2009). Isolation, characterization and evaluation of Pseudomonas fluorescens against Sclerotium rolfsii as biocontrol agent. Asian Journal of Microbiology, Biotechnology and Environmental Sciences 11: 653-656.
  24. Nguyen, T. N., Tran, V. M., Nguyen, T. T., and Le, C. N. (2004). Research on groundnut diseases in Quang Binh province. National Agriculture and Rural Development 17: 337-342.
  25. Punja, Z. K. (1985). The biology, ecology, and control of Sclerotium rolfsii. Annual Review of Phytopathology 23: 97-127.
  26. Raaijmakers, J. M., Vlami, M., and de Souza, J. T. (2002). Antibiotic production by bacterial biocontrol agents. Antonie Van Leeuwenhoek International Journal of General and Molecular Microbiology 81: 537-547.
  27. Rajyaguru, R., P. P, T., Patel, K., and Thumar, J. (2017). Biochemical basis of genotypic and bio-agent induced stem rot resistance in groundnut. Legume Research 40: 929-939
  28. Sherathia D., Dey R., Thomas M., Dalsania T., Savsani K., Pal K.K. (2016) Biochemical and molecular characterization of DAPG-    producing plant growth-promoting rhizobacteria (PGPR) of groundnut (Arachis hypogaea L.). Legume Research 39: 614-622.
  29. Smith, V. L., Jenkins, S. F., Punja, Z. K., and Benson, D. M. (1989). Survival of sclerotia of Sclerotium rolfsii: Influence of sclerotial treatment and depth of burial. Soil Biology and Biochemistry 21: 627-632.
  30. Song, B., Rong, Y.-J., Zhao, M.-X., and Chi, Z.-M. (2013). Antifungal activity of the lipopeptides produced by Bacillus amyloliquefaciens anti-CA against Candida albicans isolated from clinic. Applied Microbiology and Biotechnology 97: 7141-7150.
  31. Tonelli, M. L., Taurian, T., Ibanez, F., Angelini, J., and Fabra, A. (2010). Selection and in vitro characterization of biocontrol agents with potential to protect peanut plants against fungal pathogens. Journal of Plant Pathology 92: 73-82.
  32. Tran, H., Kruijt, M., and Raaijmakers, J. M. (2008). Diversity and activity of biosurfactant-producing Pseudomonas in the rhizosphere of black pepper in Vietnam. Journal of Applied Microbiology 104: 839-851.
  33. Yaqub, F., and Shahzad, S. (2006). Effect of fungicides on in vitro growth of Sclerotium rolfsii. Pakistan Journal of Botany 38: 881-883. 

Editorial Board

View all (0)