Legume Research

  • Chief EditorJ. S. Sandhu

  • Print ISSN 0250-5371

  • Online ISSN 0976-0571

  • NAAS Rating 6.67

  • SJR .391

  • Impact Factor .669 (2022)

Frequency :
Monthly (January, February, March, April, May, June, July, August, September, October, November and December)
Indexing Services :
BIOSIS Preview, ISI Citation Index, Biological Abstracts, Elsevier (Scopus and Embase), AGRICOLA, Google Scholar, CrossRef, CAB Abstracting Journals, Chemical Abstracts, Indian Science Abstracts, EBSCO Indexing Services, Index Copernicus
Legume Research, volume 45 issue 1 (january 2022) : 25-31

Verification of Soybean Seed Coat Colour Specific Markers Reveals I Loci Specific Markers Capable for Distinguishing Genotypes Differing in Seed Coated Colour

R.B. Shingare, V.P. Chimote, M.P. Deshmukh, T.J. Bhor, A.A. Kale
1Soybean Breeder, Agricultural Research Station, Kasbe Digraj-416 305, Sangli, Maharashtra, India.
  • Submitted20-06-2019|

  • Accepted12-06-2020|

  • First Online 28-09-2020|

  • doi 10.18805/LR-4180

Cite article:- Shingare R.B., Chimote V.P., Deshmukh M.P., Bhor T.J., Kale A.A. (2022). Verification of Soybean Seed Coat Colour Specific Markers Reveals I Loci Specific Markers Capable for Distinguishing Genotypes Differing in Seed Coated Colour. Legume Research. 45(1): 25-31. doi: 10.18805/LR-4180.
Background: In soybean yellow seed coat is preferred in the market, however, colored ones are currently gaining attention because of their medicinal and nutritive values; besides. Hence it is essential to breed varieties with desired seed coat colour. 
Methods: Twelve genotypes with six each having yellow and black seed coats were screened with fourteen primers linked to seed coat colour governing loci. 
Result: Out of them twelve primers showed polymorphism. Monomorphism was observed with both T loci specific and two of the three R loci specific primers. However I locus specific primers i.e. SM303, SM305 and TR showed polymorphism shared by their seed coat color. SM303 amplified a 180 bp sized band in yellow seed coated genotypes and a 130 bp band in black seed coated genotypes. SM305 amplified dual bands with a 200bp band being monomorphic and an additional band (192-216 bp range) present in only yellow seed coated genotypes, of which a 208 bp band was shared by four yellow seed coated genotypes. Cold induced seed coat discoloration specific TR primer generated bands of different size ranges in yellow seed coated (336-344 bp) and black seed coated genotypes (300-320), of which a 340 bp band was shared by four yellow seed coated genotypes.
  1. Bhartiya, Anuradha., Chandra, N., Pal, R.S., Aditya, J.P., Bajeli, Jyoti. (2017). Comparative yield gaps, economic impact and constraint analysis in front line demonstrations of soybean and black soybean in Uttarakhand hills. Indian J. Agril. Res. 51: 483-487.
  2. Buzzell, R.I., Buttery, B.R., MacTavish, D.C. (1987). Biochemical genetics of black pigmentation of soybean seed. J. Hered. 78(1): 53-54.
  3. Clough, S.J., Tuteja, J.H., Li, M., Marek, L.F., Shoemaker, R.C., Vodkin, L.O. (2004). Features of a 103-kb gene-rich region in soybean include an inverted perfect repeat cluster of CHS genes comprising the I locus. Genome 47: 819-831.
  4. De Chavez, H., Borromeo, T., Borines, N.O., Gentallan, R.J. (2017). Phenotypic diversity of soybean (Glycine max (L.) Merr.) accessions in the Philippines for utilization. Legume Res. 40: 9-15
  5. Doyle, J.J. and Doyle, J.V. (1987). A rapid DNA isolation procedure for small amounts of leaf tissue. Phytochem. Bull. 19: 810-815.
  6. Gillman, J.D., Tetlow, A., Lee, J.D., Shannon, J.G., Bilyeu, K. (2011). Loss-of-function mutations affecting a specific Glycine max R2R3 MYB transcription factor result in brown hilum and brown seed coats. BMC Plant Biol. DOI 10.1186/    1471-2229-11-155.
  7. Guo, Y. and Qiu, L.J. (2013). Allele-specific marker development and selection efficiencies for both flavonoid 3’-hydroxylase and flavonoid 3’, 5’-hydroxylase genes in soybean subgenus soja. Theor. Appl. Genet. 126: 1445-1455.
  8. Halvankar, G.B., Raut, V.M., Taware, S.P., Patil, V.P. (1992). Production component study in soybean. J. Maharashtra Agric. Univ. 17(3): 396-398.
  9. Hosamani J., Kumar A., Talukadar A., Lal S.K., Dadlani, M. (2013). Molecular characterization and identification of candidate markers for seed longevity in soybean (Glycine max (L) Merril). Indian J. Genet. 73(1): 64-71.
  10. Joshi, Jyoti and Rahal, A. (2018). Effect of processing method on nutritional quality of black soybean. Asian J. Dairy Food Res. 37:162-164
  11. Kosaka, H., Hatanaka, T., Yoshida, S., Toda, T. (2009). Identification of black soybean (Glycine max) Tanbaguro and processed foods by simple sequence repeat analysis. [Japanese] J. Jpn. Soc. Food Sci. 56(3): 119-128. 23.
  12. Kurauchi, T., Kasai, A., Tougou, M., Senda, M. (2011). Endogenous RNA interference of chalcone synthase genes in soybean: Formation of double-stranded RNA of GmIRCHS transcripts and structure of the 52 and 32 ends of short interfering RNAs. J. Plant Physiol. 168(11): 1264-1270.
  13. Lee, J.H., Kang, N.S., Shin, S.O., Shin, S.H., Lim, S.G., Suh, D.Y., Baek, I.Y., Park, K.Y., Ha, T.J. (2009). Characterization of anthocyanins in the black soybean (Glycine max L.) by HPLC-DAD ESI /MS analysis. Food Chem. 112:226-231.
  14. Ohnishi, S., Funatsuki, H., Kasai, A., Kurauchi, T., Yamaguchi, N., Takeuchi, T., Yamazaki, H., Kurosaki, H, Shirai, S, Miyoshi, T., Horita, H., Senda, M. (2011). Variation of GmIRCHS (Glycine max inverted-repeat CHS pseudogene) is related to tolerance of low temperature-induced seed coat discoloration in yellow soybean. Theor. Appl. Genet. 122(3): 633-642.
  15. Palmer R.G., Pfeiffer T.W., Buss, G.R., Kilen T.C. (2004). Qualitative genetics. In: Boerma H.R. and Specht J.E., editors. Soybeans: Improvement, Production and Uses. 3rd ed. Agron. Mongor. 16: 137-233. Madison, W.I. Asa, CSSA and SSSA.
  16. Senda, M., Jumanji, A., Yumoto, S., Ishikawa, R., Harada, T., Niizeki, M., Akada, S. (2002). Analysis of the duplicated CHS-1 gene related to suppression of the seed coat pigmentation in yellow soybeans. Theor. Appl. Genet. 104: 1086-1091.
  17. Senda, M., Masuta, C., Ohnishi, S., Goto, K., Kasai, A., Sano, T., Hong, J.S., Macfarlane, S. (2004). Patterning of virus infected Glycine max seed coat is associated with suppression of endogenous silencing of chalcone synthase genes. Plant Cell. 16: 807-818. 
  18. Senda, M., Kurauchi, T., Kasai, A., Ohnishi, S. (2012). Suppressive mechanism of seed coat pigmentation in yellow soybean. Breeding Sci. 61(5): 523-530.
  19. Song, Q.J., Marek, L.F., Shoemaker, R.C., Lark, K.G., Concibido, V.C., Delannay, X., Specht, J.E., Cregan, P.B. (2004). A new integrated genetic linkage map of the soybean. Theor. Appl. Genet. 109:122-128.
  20. Takahashi, R., Benitez, E.R., Funatsuki, H., Ohnishi, S. (2005). Soybean maturity and pubescence color genes improve chilling tolerance. Crop Sci. 45:1387-1393
  21. Takahashi, R., Yamagishi, N., Yoshikawa, N. (2013). A MYB transcription factor controls flower color in soybean. J. Hered. 104(1): 149-153. 
  22. Thakare, D.S., Chimote, V.P., Adsul, A.T, Deshmukh, M.P., Pulate, S.C. (2017). Molecular tagging of pod shattering tolerance trait in soybean [Glycine max (L.) Merrill] genotype MACS-450. Legume Res. 40: 224-231.
  23. Toda K., Yang D., Yamanka W., Watanabe S., Harada K., Takahashi R. (2002). A single base deletion in soybean flavonoid 3’ hydroxylase gene is associated with gray pubescence colour. Plant Mol. Biol. 50: 187-196.
  24. Todd J.J. and Vodkin L.O. (1993). Pigmented soybean (Glycine max) seed coats accumulate proanthocyanidins during development. Plant Physiol. 102: 663-670.
  25. Todd J.J. and Vodkin L.O. (1996). Duplication that suppress and deletions that restore expression from a chalcone synthase multigene family. Plant Cell. 8: 687-699.
  26. Tsoyi, K., Park, H.B., Kim, Y.M., Chung, J.I., Shin, S.C., Shim, H.J., Lee, W.S., Seo H.G., Lee, J.H., Chang, K.C., Kim, H.J.(2008). Protective effect of anthocyanins from black soybean seed coats on UVB-induced apoptotic cell death in vitro and in vivo. J Agric. Food Chem. 56(22): 10600-10605.
  27. Tuteja, J.H., Clough, S.J., Chan, W.C., Vodkin, L.O. (2004). Tissue specific gene silencing mediated by a naturally occurring chalcone synthase gene cluster in Glycine max. Plant Cell 16: 819-835.
  28. Wang, C.S., Todd, J.J. and Vodkin, L.O. (1994). Chalcone synthase mRNA activity are reduced in yellow soybean seed coats with dominant I alleles. Plant Physiol. 105: 739-748.
  29. Woodworth, C.M. (1921). Inheritance of cotyledon, seed coat, hilum and pubescence colors in soybeans. Genetics. 6: 487.
  30. Yang, K., Moon, J.K., Jeong, N., Back, K., Kim, H.M., Jeong, S.C. (2010). Genome structure in soybean revealed by a genome-wide genetic map constructed from a single population. Genomics 92: 52-59.
  31. Zabala, G. and Vodkin, LO. (2003). Cloning of the pleiotropic T locus in soybean and two recessive alleles that differentially affect structure and expression of encoded flavonoid 3’ hydroxylase. Genetics 163: 295-309.
  32. Zabala, G., and Vodkin, L.O. (2005). The wp mutation of Glycine max carries a gene-fragment-rich transposon of the CACTA superfamily. Plant Cell 17(10): 2619-2632.
  33. Zabala, G. and Vodkin, L.O. (2007). A rearrangement resulting in small tandem repeats in the F3’5’H gene of white flower genotypes is associated with the soybean W1 locus. Crop Sci. 147(S2): S-113-124.

Editorial Board

View all (0)