Legume Research

  • Chief EditorJ. S. Sandhu

  • Print ISSN 0250-5371

  • Online ISSN 0976-0571

  • NAAS Rating 6.67

  • SJR 0.391

  • Impact Factor 0.8 (2023)

Frequency :
Monthly (January, February, March, April, May, June, July, August, September, October, November and December)
Indexing Services :
BIOSIS Preview, ISI Citation Index, Biological Abstracts, Elsevier (Scopus and Embase), AGRICOLA, Google Scholar, CrossRef, CAB Abstracting Journals, Chemical Abstracts, Indian Science Abstracts, EBSCO Indexing Services, Index Copernicus
Legume Research, volume 40 issue 2 (april 2017) : 250-256

Bioregulators protected the leaf anatomy and photosynthetic machinery under water deficit stress in chickpea (Cicer arietinum L.)

T.V. Vineeth, Pramod Kumar*, Jasvir Singh
1<p>Division of Plant Physiology, Indian Agriculture Research Institute, New Delhi-110 012, India.</p>
Cite article:- Vineeth T.V., Kumar* Pramod, Singh Jasvir (2016). Bioregulators protected the leaf anatomy and photosynthetic machinery under water deficit stress in chickpea (Cicer arietinum L.) . Legume Research. 40(2): 250-256. doi: 10.18805/lr.v0iOF.4479.

Water deficit is undoubtedly one of the most important environmental stresses limiting the productivity of chickpea around the world. Exogenous application of bioregulators has been found to be a novel technology for imparting stress tolerance in crop plants. This study evaluated the changes brought about by two bioregulators viz., thiourea (TU) and thidiazuron (TDZ) under water deficit stress in chickpea leaf anatomy, chloroplast ultrastructure and photosynthesis. The experiment was conducted using Pusa 362 (Desi type) chickpea variety. Imposed water deficit treatment decreased relative water content (RWC), membrane stability index (MSI) and photosynthetic rate (PN). However, bioregulators application maintained higher RWC, MSI and PN under water deficit stress. Under imposed water stress, compact palisade layers of the mesophyll tissue were disrupted and cell size of the mesophyll cells displayed drastic reduction. Chloroplast, under water stress, displayed a number of grana with lose type of thylakoid, large increase in osmiophillic granules, reduction in the amount of starch granules and overall disruption of the thylakoid membrane. Foliar application of bioregulators maintained the integrity of mesophyll tissue and chloroplast structure thereby protected the chickpea plants from the detrimental effects of water deficit stress. 

  1. Ahmad, F., Gaur, P. and Croser, J. (2005). Chickpea (Cicer arietinum L.). In: [Singh, R. and Jauhar, P. (ed.)]: Genetic Resources, Chromosome Engineering and Crop Improvement. Grain Legumes Pp. 187-217. CRC Press., USA. 

  2. Anjum, F., Wahid, A., Farooq, M. and Javed, F. (2011). Potential of foliar applied thiourea in improving salt and high temperature tolerance of bread wheat (Triticum aestivum). Int. J. Agric. Biol. 13: 251-256. 

  3. Ashraf, M. and Harris, P.J.C. (2013). Photosynthesis under stressful environments: an overview. Photosynthetica 51: 163-190.

  4. Bandeoglu, E.F., Eyidogan, M.Y. and Öktem, H.A. (2004). Antioxidant responses of shoots and roots of lentil to NaCl salinity stress. Plant Growth Regul. 42: 69-77.

  5. Barrs, H.D. and Weatherley, P.E. (1962). A reexamination of the relative turgidity technique for estimating water deficits in leaves. Aust. J. Biol. Sci. 15: 413-428. 

  6. Carcamo, H.J., Bustos, M.R., Fernandez, F.E. and Bastias, E.I. (2012). Mitigating effect of salicylic acid in the anatomy of the leaf of (Zea mays L.) lluteno ecotype from the Lluta Valley (Arica-Chile) under NaCl stress. IDESIA (Chile) Volumen. 30: 55-63.

  7. Chaves, M.M. (1991). Effects of water deficits on carbon assimilation. J. Exp. Bot. 42: 1-16. 

  8. Chernyad’ev, I.I. (2005). Effect of water stress on the photosynthetic apparatus of plants and the protective role of cytokinins: a review. Appl. Biochem. Microbiol. 41: 115-128.

  9. Ennajesh, M., Vadel, A.M., Cochard, H. and Khemira, H. (2010). Comparative impacts of water stress on the leaf anatomy of a drought-resistant and a drought-sensitive olive cultivar. J. Hortic. Sci. Biotech, 85: 289-294.

  10. FAOSTAT.: http://faostat.fao.org/site/567/DextopDEfault. aspx?PageID = 567#ancor, 2013.

  11. Faulkner, S.P., Patrick, W.H. and Gambrell, R.P. (1989). Field techniques for measuring wetland soil parameters. Soil Sci. Soc. Am. J. 53: 883-889.

  12. Flexas, J., Bota, J., Loreto, F., Cornic, G. and Sharkey, T.D. (2007). Diffusive and metabolic limitations to photosynthesis under drought and salinity in C3 plants. Plant Biol. 6: 1-11.

  13. Giles, K.L., Cohen, D. and Beardsell, M.F. (1976). Effect of water stress on the ultrastructure of leaf cells of Sorghum bicolor. Plant Physiol. 57: 11-14.

  14. Grover, A., Kapoor, A., Kumar, D., Shashidhar, H.E. and Hittalmani, S. (2004). Genetic improvement for abiotic stress responses. In: [Jain, H.K. and Kharkwal, M.C. (ed.)]: Plant breeding-Mendelian to molecular approaches. Narosa Publishing House, India, Pp. 167-193.

  15. Guerfel, M., Baccouri, O., Boujnah, D., Chaibi, W. and Zarrouk, M. (2009). Impacts of water stress on gas exchange, water relations, chlorophyll content and leaf structure in the two main Tunisian olive (Olea europaea L.) cultivars. Sci. Hortic. 119: 257-263.

  16. Gunawardena, A.H.L.A.N., Pearce, D.M.E., Jackson, M.B., Hawes, C.D. and Evans, D.E. (2001). Rapid changes in cell wall pectic polysaccharides are closely associated with early stages of aerenchyma formation, a spatially localized form of programmed cell death in roots of maize (Zea mays L.) promoted by ethylene. Plant Cell Environ. 24: 1369-1375.

  17. Guo, B., Abbasi, B.H., Zeb, A., Xu, L.L. and Wei, Y.H. (2011). Thidiazuron: a multi-dimensional plant growth regulator. Afr. J. Biotechnol. 10: 8984-9000.

  18. Haisel, D., Pospíšilová, J., Synková, H., Schnáblová, R. and Baková, P. (2006). Effects of abscisic acid or benzyladenine on pigment contents, chlorophyll fluorescence, and chloroplast ultrastructure during water stress and after rehydration. Photosynthetica 44: 606-614. 

  19. Hammed, A. and Sheikh, M.A. (2007). Changes in catalase, peroxidase activities and soluble proteins in wheat leaves on thiourea and H2O2 treatments. Biosci. Res. 4: 21-27. 

  20. Hsiao, T.C. (1973). Plant response to water stress. Ann. Rev. Plant Physiol. 24: 519-70.

  21. Iftikhar, A., Abbas, S.Q., Hameed, M., Naz, N., Zafar, S. and Kanwal, S. (2009). Leaf anatomical adaptations in some exotic species of Eucalyptus l’hér. (Myrtaceae). Pak. J. Bot. 41: 2717-2727.

  22. Kumar, J. and Abbo, S. (2001). Genetics of flowering time in chickpea and its bearing on productivity in semiarid environments. Adv. Agron. 72: 107-138.

  23. Lawlor, D.W. (2002). Limitations to photosynthesis in water stressed leaves: stomatal vs. metabolism and the role of ATP. Ann. Bot. 89: 871-885.

  24. Lazova, G. and Yonova, P. (2010). Photosynthetic parameters were modified in wheat (Triticum aestivum L.) flag leaves by two phenylurea cytokinins. Int. J. Plant Sci. 171: 809-817.

  25. Makbul, S., Saruhan Guler, N., Durmus, N. Guven, S. (2011). Changes in anatomical and physiological parameters of soybean under drought stress. Turk J. Bot., 35: 369-377

  26. Mathur, N., Singh, J., Bohra, S., Bohra, A. and Vyas, A. (2006). Improved productivity of mung bean by application of thiourea under arid conditions. World J. Agric. Sci. 2: 185-187.

  27. Mehta, J.P., Sharma, D.D. and Suman- Shukla, K.B. (2006). Effect of bioregulators and moisture stress on dry matter accumulation and its partitioning in mustard. Indian J. Plant Physiol. 11: 104-107.

  28. Mok, M.C., Mok, D.W.S., Armstrong, D.J., Shudo, K., Isogai, Y. and Okamoto, T.L. (1982). Cytokinin activity of N-    phenyl-N’-1,2,3-thiadiazol-5-ylurea (Thidiazuron). Phytochem. 21: 1509-1511.

  29. Olmos, E., Sanchez-Blanco, M.J., Ferrandez, T. and Alarcon, J.J. (2007). Subcellular effects of drought stress in Rosmarinus officinalis. Plant Biol. 9: 77-84.

  30. Panse, V.G. and Sukhatme, P.V. (1967). Statistical Methods for Agricultural Workers. ICAR publication, New Delhi, India, Pp.1-381. 

  31. Pitman, W.D., Holte, C., Conrad, B.E. and Bashaw, E.C. (1983). Histological differences in moisture stressed and non-    stressed kleingrass forage. Crop Sci. 23: 793-795.

  32. Premachandra, G.S., Saneoka, H. and Ogata. (1990). Cell membrane stability an indicator of drought tolerance as affected by applied N in soybean. J. Agric. Soc. Camp. 115: 63-66.

  33. Rivero, R.M., Shulaev, V. and Blumwald, E. (2009). Cytokinin-dependent photorespiration and the protection of photosynthesis during water deficit. Plant Physiol. 150: 1530-1540.

  34. Rizvi, A.H., Kumar, V., Dwivedi, S.K., Sairam, R.K., Yadav, S.S., Bharadwaj, C., Sarker, A. and Alam, A. (2014). Physiological studies on moisture stress tolerance in chickpea (Cicer Arietinum L.) genotypes. Int. J. Scient. Res. Agric. Sci. 1: 23-31.

  35. Sahu, M.P., Solanki, N.S. and Dashora, L.N. (1993). Effects of thiourea, thiamine and ascorbic acid on growth and yield of maize (Zea mays L.). J. Agron. Crop. Sci. 171: 65-69.

  36. Sayd, S.S., Taie, A.A.H. and Taha, L.S. (2010). Micropropagation, antioxidant activity, total phenolics and flavonoids content of Gardenia jasminoides ellis as affected by growth regulators. Int. J. Acad. Res. 2: 184-191.

  37. Schulze, E.D. (1986). Carbon dioxide and water vapour exchange in response to drought in the atmosphere and in the soil. Ann. Rev. Plant Physiol. 37: 247-274.

  38. Shanu, I.S., Naruka, P.P., Singh, R.P.S. and Shaktawat-Verma, K.S. (2013). Effect of seed treatment and foliar spray of thiourea on growth, yield and quality of coriander (Coriandrum sativum L.) under different irrigation levels. Indian J. Seed Spices 3: 20-25.

  39. Shao, H.B., Chu, L.Y., Jaleel, C.A. and Zhao, C.X. (2008). Water deficit stress induced anatomical changes in higher plants. C. R. Biol. 331: 215-225.

  40. Srivastava, A.K., Srivastava, S., Penna, S. and D’Souza, S.F. (2011). Thiourea orchestrates regulation of redox state and antioxidant responses to reduce the NaCl induced oxidative damage in Indian mustard (Brassica juncea L. Czern.). Plant Physiol. Biochem. 49: 676-686.

  41. Talebi, R., Ensafi, M.H., Baghbani, N., Karami, E. and Mohammadi, K.H. (2013). Physiological responses of chickpea (Cicer arietinum) genotypes to drought stress. Environ. Exp. Biol. 11: 9-15.

  42. Tambussi, E.A., Bartoli, C.G., Beltrano, J., Guiamet, J.J. and Araus, J.L. (2002). Oxidative damage to thylakoid proteins in water stressed leaves of wheat (Triticum aestivum). Physiol. Plant. 108: 398-404.

  43. Utrillas, M.J. and Alegre, L. (1997). Impact of water stress on leaf anatomy and ultrastructure in Cynodcon dactylon L. Pers. under natural conditions. Int. J. Plant Sci. 158: 313-324.

  44. Vakilionová, S., Dilova, M., Tsenová, E., Vunkova-Radeva, R. and Lazova, G. (1991). Effect of thidiazuron (dropp), jasmonic acid and fusicoccin on the photosynthetic assimilation of carbon and the bioproductivity in soyabean. Bulg. J. Plant Physiol. 12: 49-55.

  45. Vapaavuori, E.M., Korpilahti, E. and Nurmi, A.H. (1984). Photosynthetic rate in willow leaves during water stress and changes in the chloroplast ultrastructure, with special reference to crystal inclusions. J. Exp. Bot. 35: 306-321.

  46. Vineeth, T.V., Kumar, P., Yadav, S. and Pal, M. (2015). Optimization of bioregulators dose based on photosynthetic and yield performance of chickpea (Cicer arietinum L.) genotypes. Indian J. Plant Physiol. 20: 177-181.

  47. Zhou, J., Ma, H., Guo, F. and Luo, X. (1994). Effect of thidiazuron on somatic embryogenesis of Cayratia japonica. Plant Cell Tissue Organ Cult. 36: 73-79.

Editorial Board

View all (0)