Legume Research

  • Chief EditorJ. S. Sandhu

  • Print ISSN 0250-5371

  • Online ISSN 0976-0571

  • NAAS Rating 6.80

  • SJR 0.391

  • Impact Factor 0.8 (2023)

Frequency :
Monthly (January, February, March, April, May, June, July, August, September, October, November and December)
Indexing Services :
BIOSIS Preview, ISI Citation Index, Biological Abstracts, Elsevier (Scopus and Embase), AGRICOLA, Google Scholar, CrossRef, CAB Abstracting Journals, Chemical Abstracts, Indian Science Abstracts, EBSCO Indexing Services, Index Copernicus
Legume Research, volume 39 issue 5 (october 2016) : 729-733

Molecular diversity of berseem (Trifolium alexandrinum L.) rhizobia isolated from Haryana soil

Varsha Garg*1, Kamlesh Kukreja, Rajesh Gera
1<p>Department of Microbiology, CCS Haryana Agricultural University, Hisar-125 004, India.</p>
Cite article:- Garg*1 Varsha, Kukreja Kamlesh, Gera Rajesh (2015). Molecular diversity of berseem (Trifolium alexandrinum L.) rhizobia isolated from Haryana soil . Legume Research. 39(5): 729-733. doi: 10.18805/lr.v0iOF.6848.

Total of forty rhizobia were isolated from nodule samples of berseem crop from farmers’ fields representing 17 villages of Haryana state, India. All the isolates were Gram-negative small rods and authenticated as rhizobia by plant infectivity test. Twenty nine rhizobial isolates on the basis of good nodulation characteristics were further selected for molecular diversity study. The amplified PCR product of genomic DNA of all the 29 rhizobia was digested with HaeIII restriction enzyme which resulted in polymorphic bands. Dendrogram based on RFLP of 16S rDNA profiles showed that all the 29 isolates were distributed in two major groups with different subgroups. A total of 7 biotypes were formed at 80% level of similarity by considering each cluster as rhizobial biotype, and out of these, two biotypes (1st and 5th) were found to be most prevalent in all the three districts studied. So, the rhizobia belonging to these two biotypes may be used as biofertilizer in these three districts. Moreover, isolates from same nodule were not 100% similar. It indicated that considerable diversity was present among berseem rhizobial isolates

  1. Anchondo, J.A., Wall, M.M., Gutschick, V.P. and Smith, D.W. (2002). Growth and yield of Iron-deficient Chile Peppers in sand culture. J. Amer. Soc. Hort. Sci. 127: 205-210. 

  2. Ausubel, F.M., Brent, R., Kingston, R.E., Moore, D.D., Seidman, J.G., Smith, J.A., Struhl, K., Albright, L.M., Coen, D.M., Varki, A. and Chanda, V.B. (eds.) (2001). Current Protocols in Molecular Biology. Vol. 1 Unit 2.4: John Wiley, New York.

  3. Blazinkov, M., Sikora, S., Uher, D., Macesic, D. and Redzepovic, S. (2007). Genotypic characterization of indigenous Rhizobium leguminosarum bv. viciae field population in Croatia. Agric. Conspec. Sci. 72: 153-158.

  4. Catroux, G., Hartmann, A. and Revellin, C. (2001). Trends in rhizobial inoculants production and use. Plant Soil. 230: 21-30.

  5. Choudhary, S., Meena, R.S., Singh, R., Vishal, M.K., Choudhary, V. and Panwar, A. (2013). Assessment of genetic diversity among Indian Fenugreek (Trigoiella Foenum-Graecum L.) varieties using morphological and RAPD markers. Legume Res. 36: 289-298.

  6. De Meyer, S.E., Van Hoorde, K., Vekeman, B., Braeckman, T. and Willems, A. (2011). Genetic diversity of rhizobia associated with indigenous legumes in different regions of Flanders (Belgium). Soil biol. Biochem. 43: 2384-2396.

  7. Duhan, J.S. and Dudeja, S.S. (1999). Competitiveness does not correlate with siderophore production in Rhizobium-    Cajanus cajan symbiosis. Symbiosis. 26: 79-87.

  8. Duodu, S., Carlsson, G., Huss-Danell, K. and Svenning, M.M. (2007). Large genotypic variation but small variation in N2 fixation among rhizobia nodulating red clover in soils of northern Scandinavia. J. Appl. Microbiol. 102: 1625-1635.

  9. Grange, L. and Hungria, M. (2004). Genetic diversity of indigenous common bean (Phaseolus vulgaris) rhizobia in two Brazilian ecosystems. Soil Biol. Biochem. 36: 1389-1398.

  10. Heuer, H., Kresk, M., Baker, P., Smalla, K. and Wellington, E.M. (1997). Analysis of actinomycete communities by specific amplification of genes encoding 16S rRNA and gel electrophoresis separation in denaturing gradient. Appl. Environ. Microbiol. 63: 3233-3241.

  11. Lukow, T., Dunfield, P.F. and Liesack, W. (2000). Use of the t-RFLP technique to assess spatial and temporal changes in the bacterial community structure within an agricultural soil planted with transgenic and non-transgenic potato plants. FEMS Microbiol. Ecol. 32: 241-247.

  12. Muyzer, G. (1999). DGGE/TGGE a method for identifying genes from natural ecosystems. Curr. Opin. Microbiol. 2: 317-322.

  13. Nandwani, R. and Dudeja, S.S. (2009). Molecular diversity of a native mesorhizobial population nodulating chickpea (Cicer arietinum L.) in Indian soils. J. Basic Microbiol. 49: 463-470.

  14. Narula, S., Anand, R.C., Dudeja, S.S. and Pathak, D.V. (2013). Molecular diversity of root and nodule endophytic bacteria from field pea (Pisum sativum L.). Legume Res. 36: 344-350.

  15. Pal, M., Karthikeyapandian, V., Jain, V., Srivastava, A.C., Raj, A. and Sengupta, U.K. (2004). Biomass production and nutritional levels of berseem (Trifolium alexandrinum) grown under elevated CO2. Agric. Ecosyst. Environ. 101: 31-38.

  16. Qasim, M., Din, M., Sher Ahmed, F., Jan, R. and Ahmed, S. (2007). Evaluation of berseem varieties for fodder yield at Juglot, Gilgit. J. Agric. Res. 45: 165-169.

  17. Ramírez-Bahena, M.H., García-Fraile, P., Peix, A., Valverde, A., Rivas, R., Igual, J.M. and Velázquez, E. (2008). Revision of the taxonomic status of the species Rhizobium leguminosarum (Frank 1879) Frank 1889AL, Rhizobium phaseoli Dangeard 1926AL and Rhizobium trifolii Dangeard 1926AL. R. trifolii is a later synonym of R. leguminosarum. Reclassification of the strain R. leguminosarum DSM 30132 (= NCIMB 11478) as Rhizobium pisi sp. nov. Int. J. Syst. Evol. Microbiol. 58: 2484-2490.

  18. Rashid, M.H.O., Sattar, M.A., Uddin, M.I. and Young, J.P.W. (2009). Molecular characterization of symbiotic root nodulating rhizobia isolated from lentil (Lens culinaris Medik.). Elec. J. Env. Agricult. Food Chem. 8: 602-612.

  19. Rohlf, F.J. (1998). On applications of geometric morphometrics to studies of ontogeny and phylogeny. Syst. Biol. 47: 147-158.

  20. Singla, A., Dubey, S.K., Singh, A. and Inubushi, K. (2014). Effect of biogas digested slurry-based biochar on methane flux and methanogenic archaeal diversity in paddy soil. Agric. Ecosyst. Environ. 197: 278-287.

  21. Singla, A., Dubey, S.K., Ali, M.A. and Inubushi, K. (2015). Methane flux from paddy vegetated soil: a comparison between biogas digested liquid and chemical fertilizer. Wetlands Ecol. Manage. 23: 139-148. 

  22. Sloger, C. (1969). Symbiotic effectiveness and nitrogen fixation in nodulated soybean. Plant Physiol. 44: 1666-1668.

  23. Vincent, J.M. (1970). A manual for the practical study of root nodule bacteria. IBM Handbook No. 15. Oxford: Blackwell Scientific Publications.

  24. Wadhwa, K., Dudeja, S.S. and Yadav, R.K. (2011). Molecular diversity of native rhizobia trapped by five field pea genotypes in Indian soils. J. Basic Microbiol. 51: 89-97.

  25. Weir, B.S. (2011). The current taxonomy of rhizobia. New Zealand rhizobia website. http://www.rhizobia.co.nz/taxonomy/    rhizobia.html. Last updated:14 August, 2011.

  26. Zayed, E.M. (2013). Applications of Biotechnology on Egyptian Clover [(Berseem)(Trifolium alexandrinum L.)]. Int. J. Agric. Sci. Res. 3: 99-120.

  27. Zeze, A., Mutch, L.A. and Young, J.P.W. (2001). Direct amplification of nodD from community DNA reveals the genetic diversity of Rhizobium leguminosarum in soil. Environ. Microbiol. 3: 363-370.

Editorial Board

View all (0)