Legume Research

  • Chief EditorJ. S. Sandhu

  • Print ISSN 0250-5371

  • Online ISSN 0976-0571

  • NAAS Rating 6.80

  • SJR 0.391

  • Impact Factor 0.8 (2024)

Frequency :
Monthly (January, February, March, April, May, June, July, August, September, October, November and December)
Indexing Services :
BIOSIS Preview, ISI Citation Index, Biological Abstracts, Elsevier (Scopus and Embase), AGRICOLA, Google Scholar, CrossRef, CAB Abstracting Journals, Chemical Abstracts, Indian Science Abstracts, EBSCO Indexing Services, Index Copernicus
Legume Research, volume 40 issue 1 (february 2017) : 63-68

Effect of cadmium chloride on soybean in presence of arbuscular mycorrhiza and vermicompost 

Parvin Pireh, Alireza Yadavi*, Hamidreza Balouchi
1<p>Department of Agronomy and Plant Breeding,&nbsp;Faculty of Agriculture, Yasouj University, Yasouj, Iran.</p>
Cite article:- Pireh Parvin, Yadavi* Alireza, Balouchi Hamidreza (2016). Effect of cadmium chloride on soybean in presence ofarbuscular mycorrhiza and vermicompost . Legume Research. 40(1): 63-68. doi: 10.18805/lr.v0iOF.3770.

A greenhouse experiment was conducted to study the combined effects of cadmium toxicity, application of vermicompost and inoculation of arbuscular mycorrhiza on soybean. The experiment was laid out in a completely randomized design (factorial) and replicated thrice. The treatments included arbuscular mycorrhiza in two levels (inoculation and non- inoculation in soil), vermicompost in two levels (application @ 5 % of soil weight and non-application) and cadmium chloride in five levels (0, 20, 40, 80 and 160 mg kg-1 of soil). The result showed that increasing concentrations of cadmium chloride significantly increased electrolyte leakage and leaf transpiration, and decreased photosynthetic rate, Fv/Fm, root weight, pod number per plant and grain weight per plant. Application of vermicompost and mycorrhiza decreased the toxic effects of cadmium chloride. Application of vermicompost increased Fv/Fm, grain weight per plant, number pods per plant and seed oil percent, and application of mycorrhiza increased root weight and photosynthetic rate.


  1. Arancon, N.Q., Edwards, C.A., Bierman, P., Welchand, C. and Metzger, J.D. (2004). Influences of vermicomposts on field strawberries: 1. Effects on growth and yields. Bioresource Technol., 93: 145-153.

  2. Benavides, M.P., Gallego, S.M. and Tomaro, M.L. (2005). Cadmium toxicity in plants. Brazilian J Plant Physiol., 17: 21-    34.

  3. Bilger, W., Schreiber, U. and Bock, M. (1995). Determination of the quantum efficiency of photosystem II and of non-    photochemical quenching of chlorophyll fluorescence in the field. Oecologia, 102: 425-432.

  4. Bradley, R., Burt, A.J. and Read, D.J. (1981). Mycorrhizal infection and resistance to heavy metal toxicity in Calluna vulgaris. Nature, 229: 335-337.

  5. Das, P.K., Sarangi, D., Jena, M.K. and Mohanty S. (2002). Response of greengram (Vigna radiate L.) to integrated application of vermicompost and chemical fertilizer in acid lateritic soil. Indian Agric J., 46: 79-87.

  6. Esfandiari, E.A., Shakiba, M.R., Mahboob, S.A., Alyari, H. and Toorchi, M. (2007). Water stress, antioxidant enzyme activity and lipid peroxidation in wheat seeding. J Food, Agric Environ., 5: 48-53.

  7. Gaur, A. and Adholeya, A. (2004). Prospects of arbuscular mycorrhizal fungi in phytoremediation of heavy metal contaminated soils. Current Sci., 86: 528-534.

  8. Gonzalez-Guerrero, M., Azcon-Aguilar, C., Mooney, M., Valderas, A., MacDiarmid, C.W., Eide, D.J. and Ferrol, N. (2005). Characterization of a Glomus intraradices gene encoding a putative Zn transporter of the cation diffusion facilitator family. Fungal Genetics and Biol., 42: 130-140.

  9. Graan, T. and Boyer, J.S. (1990). Very high CO2 partially restores photosynthesis in sunflower at low water potentials. Planta, 181: 378-384.

  10. Ilbas, A.I. and Sahin, S. (2005). Glomus fasiculatum inoculation improves soybean production. Acta Agriculture Scandinavica Section B-Soil and Plant Sci., 55: 287-292.

  11. Kaya, C., Higges, D., Ince, F., Amador, B.M., Cakir, A. and Sakar, E. (2003). Ameliorative effects of potassium phosphate on salt-stressed pepper and cucumber. J Plant Nutrion, 26: 807-820.

  12. Khalighi Jamal-Abad, A. and Khara, J. (2009). The effect of arbuscular mycorrhizal fungus glomus intraradices on some growth and physiological parameters in wheat (cv. azar2) plants under cadmium toxicity. Iranian J Biol., 21: 769-783.

  13. Li, S., Yang, W., Yang, T., Chen, Y. and Ni, W. (2015). Effects of cadmium stress on leaf chlorophyll fluorescence and photosynthesis of Elsholtzia argyi—A cadmium accumulating plant. Int J Phytoremediation, 17: 85-92.

  14. Mishra, S., Srivastava, S. and Tripathi, P.D. (2006). Phytochelatin synthesis and response of antioxidants during cadmium stress in (Baccopa monnieri L.(. J Plant Physiol Biochem., 44: 25-37.

  15. Mohanty, S., Paikaray, N.K. and Rajan, A.R. (2006). Availability and uptake of phosphorus from organic manures in groundnut (Arachis hypogea L.) - corn (Zea mays L.) sequence using radio tracer technique. Geoderma, 133: 225-230.

  16. Noorani Azad, H. and Kafilzadeh, F. (2011). The effect of cadmium toxicity on growth, soluble sugars, photosynthetic pigments and some of enzymes in safflower (Carthamus tinctorius L.). Iranian J Biol., 24: 858-867.

  17. Popova, L., Maslenkova, L., Yordanova, R., Krantev, A., Szalai, G. and Janda, T. (2007). Salicylic acid protects photosynthesis against cadmium toxicity in pea plants. General and Applied Plant Physiol., 34: 133-148.

  18. Ryan, M.H. and Graham, J.H. (2002). Is there a role for arbuscular mycorrhizal fungi in production agriculture? Plant and Soil, 244: 263-271.

  19. Schutzendubel, A. and Polle, A. (2002). Plant responses to abiotic stresses: Heavy metal-induced oxidative stress and protection by mycorrhization. J Experi Botan., 53: 1351-1365.

  20. Skrebsky, E.C., Tabaldi, L.A., Pereira, L.B.,R. Rauber, R., Maldaner, J., Cargnelluti, D., Goncalves, J.F., Castro, G.Y., Chetinger, M.R.C. and Nicoloso, F.T. (2008). Effect of cadmium on growth. Micronutrient concentration and ä-    aminolevulinic acid dehydratese and acid phosphatase activities in plant of Pfaffia glomerata. Brazilian J Plant Physiol., 20: 285-294.

  21. Soltani, F., Ghorbanali, M. and Manochehri Kalantari, KH. (2006). Effect of cadmium on photosynthetic pigments, sugars and malondealdehyde content in (Brassica napus L.). Iranian J Biol, 19: 235-241. 

  22. Souza, V.L., De Almeida, A.A., Lima, S.G., De M Cascardo, J.C., Da Silva, D., Gomes, Mangabeira, P.A. and F.P. (2011). Morphophysiological responses and programmed cell death induced by cadmium in Genipa americana L. (Rubiaceae). Biometals, 24: 59-71.

  23. Garg, N. and Aggarwal, N. (2012). Effect of mycorrhizal inoculations on heavy metal uptake and stress alleviation of Cajanus cajan (L.) Millsp. genotypes grown in cadmium and lead contaminated soils. Plant Growth Reg., 66: 9 -26.

  24. Ortíz-Castro, R., Contreras-Cornejo, H.A., Macías-Rodríguez, L. and López-Bucio, J. (2009). The role of microbial signals in plant growth and development. Plant Signaling and Behavior, 4: 701–712.

Editorial Board

View all (0)