Indian Journal of Agricultural Research

  • Chief EditorV. Geethalakshmi

  • Print ISSN 0367-8245

  • Online ISSN 0976-058X

  • NAAS Rating 5.60

  • SJR 0.293

Frequency :
Bi-monthly (February, April, June, August, October and December)
Indexing Services :
BIOSIS Preview, ISI Citation Index, Biological Abstracts, Elsevier (Scopus and Embase), AGRICOLA, Google Scholar, CrossRef, CAB Abstracting Journals, Chemical Abstracts, Indian Science Abstracts, EBSCO Indexing Services, Index Copernicus
Indian Journal of Agricultural Research, volume 53 issue 6 (december 2019) : 641-645

Utilization of Liquid Fertilizers for Agro-Industrial Waste Management and Reducing Challenges through Nano-encapsulation-A Review

Gayathri Unnikrishnan, Ramasamy Vijayaraghavan
1Department of Microbiology, Nehru Arts and Science College, Thirumalayampalayam, Coimbatore-641 105, Tamil Nadu, India.
Cite article:- Unnikrishnan Gayathri, Vijayaraghavan Ramasamy (2019). Utilization of Liquid Fertilizers for Agro-Industrial Waste Management and Reducing Challenges through Nano-encapsulation-A Review. Indian Journal of Agricultural Research. 53(6): 641-645. doi: 10.18805/IJARe.R-1898.
Due to the robust demand for food, fiber, and bio energy resources, there is a rapid hire for strategies that perform utilization of finite resources, providing a real provocation to the agricultural industry, investigator and collaborators. Released funds in agriculture around past years have seen the growth of organic manures and fertilizers. The enhanced use of microbial inoculants (Bacteria, Cyanobacteria and Fungi) in crop plants has increase the mobilization of key microelements in soil such as potassium, phosphorous and nitrogen.  In account of the large scale agro-industrial waste collected in a year throughout the world, it contained a major share of lignocelluloses and starch. Here, we advocate the terminology, nano encapsulation of bio-inoculants and their potential in providing macronutrients for variant soil and plant biomes. Evidence to support larger crop yield are currently disconcerted by insufficient plot study and poor knowledge on their essential metabolism, which had led to conflicting reports on their field performance. There is moreover, a scope to improve sustainable macronutrient profiling in soil plant symbiotic system.   The further investigation can be performed on studies that suggest entangling activities of microbial interactions in soil.
  1. Adetunji, C.O., Neera, B.S., (2017). Impacts of Biogenic Nanoparticle on the biological control of plant pathogens, Adv in Biotech and Micro. 7(3): 555711. 
  2. Anitha, S., Natarajan, T.S., Fabrication of Hierarchical ZnO Enriched Fibrous PVA membrane, American Scientific Publishers. 13(6) (2003): pp. 4256-4264.
  3. Auffan, M., Rose, J., Bottero, J.Y., Lowry, G.V., Jolivet, J.P., Wiesner, M.R., (2009). Towards a definition of inorganic nanoparticles from an environmental, health and safety perspective, Nat Nanotechnology. 4: pp. 634–664.
  4. Bashan, Y., G, Holguin, L.E, de-Bashan., (2004). Azospirillum-plant relationships: physiological, molecular, agricultural and environmental advances, Can. J. Microbiol. 50: 521–577.
  5. Brady, N.C., Weil, R.R., (2008). The nature and properties of soil, 14 ed. Prentice –Hall, Upper Saddle River, New Jersey.
  6. Chinnamuthu, C.R., (2012). Nanoherbicide: a new tool in modern weed management, Biennial Conference of Indian Society, Ker Agri University. 6: pp. 19-20.
  7. De Moura, M.R., Aouda, F.A., Mattoso, L.H.C., (2008). Preparation of chitosan nanoparticles using methacrylic acid, J. Colloid Interface Sci. 32: 477–483. 
  8. De Vasconcelos, C.L., Bezerril, P.M., dos Santos, D.E.S., Dantas, T.N.C., Pereira, M.R., Fonseca, J.L.C., (2006). Effect of molecular weight and ionic strength on the formation of polyelectrolyte complexes based on poly (methacrylic acid) and chitosan. Biomacromolecules. 7: 1245–1252. 
  9. Duhan,J.S., Kumar,R., Kumar,N., Kaur,P., Nehra,K., Duhan,S., (2017). Nanotechnology: The new perspective in precision agriculture, Biotechnology Rep (Amst). 15: 11-23.
  10. Ghormade,V., Deshpande M.V., Paknikar, K.M., (2011). Perspectives for nano-biotechnology enabled protection and nutrition of plants, Biotechnology Adv. 29: 792–803.
  11. Hasaneen, M.N.A., Abdel-Aziz, M.M., El-Bialy, D.M.A., Omer, A.M., (2014). Preparation of chitosan nanoparticles for loading with NPK fertilizer. Afr. J. Biotechnol.13: pp.3158–3164.
  12. Hermann, L., Lesueur, D., (2017). Challenges of formulation and quality of biofertilizers for successful inoculation, App Micro and Biotech. 97(20): 8859-8873.
  13. Hutasoit, S., Suada, I.K., Susrama, I.G.K., (2013). Antifungal activity test extracts some marine life link to Aspergillus flavus and Penicillium sp, E J. Trop. Agroecotechnol. 2: 27–38.
  14. Kunz, R.I., Brancalhao, R.M.C., Ribeiro, L.F.C., Natali, M.R.C., Silkworm Sericin: (2016). Properties and Biomedical Applications, Biomed Res Int. (8175701).
  15. Manjunatha, S.B., Biradar, D.P., Aladakatti, Y.R., (2016). Naanotechnology and its alications in agriculture:A review, J Farm Sci. 29(1): 1-13.
  16. Pabitra, K.M., Sudeshna, M., (2016). Agri nanotechiques for Plant availability of nutrients, Plant Nanotech. 263-303.
  17. Ragaei, M., Sabry, A.H., (2014). Nanotechnology for insect pest control, Int. J. Sci. Environ. Technol. 3: 528–545.
  18. Rai, M., Ingle, A., (2012). Role of nanotechnology in agriculture with special reference to the management of insect pests, Appl Microbiol. Biotechnol. 94: 287–293.
  19. Ramesh, K., (2014). Biodegradable Nanoparticles as carriers in quick delivery of pesticides, Agrotechnol. 2(4): pp. 115.
  20. Sahar,O., Hamid, S., Mehdi, M.S., Azadeh, M., (2015). Evaluation of antifungal activity of aqueous extracts of some medicinal plants against Aspergillus flavus, pistachio aflatoxin producing fungus in vitro, Drug Dev Ther. 6(2): pp. 66-69. 
  21. Sanchez, C., (2009). Lignocelluloses residues: Biodegradation and bioconversion by fungi. Biotechnol. 27: 185–194.
  22. Santoso, D., Lefroy, R.D.B., Blair, G.J. (1995). Sulfur and phosphorus dynamics in an acid soil/crop system. Aust. J. Soil Res. 3: 113–124.
  23. Shaviv, A., (2000). Advances in controlled release of fertilizers, Adv. Agron. 71: 1–49.
  24. Subramaniam, K. S., (2017). Nano-Agri Inputs for Boosting Pulses Productivity, DST-Nano Mission, Tamil Nadu Agricultural University.
  25. Subramanian, K.S., Tarafdar, J.C., (2014). Prospects of nanotechnology in Indian farming, Ind. J. Agric. Sci. 8: 887–893.
  26. Thirunavukkarasu, M., Subramanian, K.S., (2014). Surface modified nano-zeolite used as carrier for slow release of sulfur, Journal of Applied and Natural Science. 6 (1):19-26.
  27. Tilman, D., Cassman, K.G., Matson, P.A., Naylor, R., Polasky, S., (2002). Agricultural sustainability and intensive production practices., Nature. 418: 671–677.
  28. Wilson, M.A., Tran, N.H., Milev, A.S., Kannangara, G.S.K., Volk, H., Lu, G.Q.M, (2008). Nanomaterials in soils. Geoderma. 146: 291–302.
  29. Wu S.C., Cao Z.H., Li Z.G., Cheung K.C., Wong M.H. (2005). Effects of biofertilizer containing N-fixer, P and K solubilizers and AM fungi on maize growth: a greenhouse trial. Geoderma. 125: 155–166.
  30. Wu, Y., Guo, J., Yang, W., Wang, C., Fu, S., (2006). Preparation and characterization of chitosan-poly (acrylic acid) polymer magnetic microspheres, Polymer. 47: 5287–5294. 

Editorial Board

View all (0)