FUNCTIONAL ASSIGNMENT TO asl1274 UNKNOWN PROTEIN SEQUENCE IN ANABAENA sp.PCC7120

Article Id: ARCC743 | Page : 188 - 194
Citation :- FUNCTIONAL ASSIGNMENT TO asl1274 UNKNOWN PROTEIN SEQUENCE IN ANABAENA sp.PCC7120.Indian Journal Of Agricultural Research.2011.(45):188 - 194
K.V. Ashokan and S.A. Patil1
Address : Department of Biological Science, PVP College, Kavathe Mahankal, Sangli - 416 405, India

Abstract

The genome of anabaena consists of a single chromosome and six plasmid. The chromosomal genes, location 1506484-1506880, coding for various protein shows that three protein sequences, a111268, a111273 and asl1274 , are not assigned to any function i.e. unknown protein. The sequence asl1274 retrieved from CyanoBase give one oligotransport protein match with BLAST2 homology search. The SVMProt search of the same sequence gives ten functional domains of various functions including transmembrane domain. The most possible match of the sequence was found by sequential BLAST of the sequence by using MODWEB.The presence of transmembarne domain is substantiated by SOSUI analysis and point out the protein belongs to family TC 2.49 in the classification of transporters. The PDB structure with matches to PROSITE entry PS01219 reveals that the unknown protein belongs to ammonium transporter. The PROSITE gives six matches. The matches were validated by using VADAR server. The hydrophobicity profile by VADAR and 3D structure of 1U7U and 2NUU proves that the protein included in the ammonium transporter family.

Keywords

Anabaena sp.PCC 120 SVMProt MODWEB Transmembrane VADAR Ammonium transporter protein.

References

  1. Berman, H .M; Battistuz, T; Bhat, T .N; Bluhm, W. F; Bourne, P.E; Burkhardt, K; Feng, Z; Gilliland, G. L; Iype, L. and Jain, S. (2002). The protein databank, Crystallogr, 58: 899–907.
  2. Birch, P J; Debekker, L. V; James, F. I; Southan, A. and Cronk, D. (2004). Strategies to identify ion-channel modulators: current and novel approaches to target neuropathic pain, Drug Dicov.Today., 9: 410-418.
  3. Boussiba, S; Dilling, W. and Gibson, J. (1984). Methylammonium transport - A model for ammonia transport in a cyanobacterium, J. Bacteriol., 160: 204-210.
  4. Cai, C. Z. and Lin, S L. (2003). Predicting functional family of novel enzymes irrespective of sequence similarity: a statistical learning approachBiochem.Biophyd.Actya., 1648: 127-133.
  5. Craig, E. J; Baumann, U. and Brown, A .L. (2005). Automated methods of predicting the function of biological sequences using GO and BLASTBMC Bioinformatics., 6: 272.
  6. Hackette, S.L; Skye, G. E; Burton, C. and Segel, I. H (1970). Characterization of an ammonium transport system in filamentous fungi with methyl ammonium 14C as the substrate, J. Biol. Chem. 245: 4241-4250).
  7. Hirosawa, M; Kanenko, T and Tabata, T. (1995). Prediction of translation initiation sites on the genome of Synechocystis sp. strain PCC6803 by Hidden Markov model, Nucl. Acids Res., 26(1): 63-67.
  8. Hoek, C. V; Mann, D. G and Jahns, H. M. (1995). In Algae: an introduction to phycology, Cambridge University Press. Cambridge.
  9. Javelle, A; Lupo, D; Li, X .D; Merrick, M; Chami, M; Ripoche, P and Winkler, F. K. (2007). Structural and mechanistic aspects of Amt/Rh proteins. J. Struct. Biol., 158: 472-481.
  10. Kanenko, T ; Nakamura, Y ; Wolk, P.C; Kurttz, T; Sasampto, S; Watanabe, A; Iriguchi, M ;Ishikawa, A ; Kawashima, K; Kimura, T; Kishida, Y; Kohara, M; Matsumoto, M; Matsuno ,A; Murakai, A; Nakazaki, N; Shimpo, S; Sugimoto, M; Takazawa, M; Yamada, M; Yasudha, M and Tabata, S. (2001). Whole-genome random sequencing and assembly of Haemophilus influenzae Rd. DNA research., 8: 205-213.
  11. Ludewig, U. S; Wilken, B; Wu ,W; Jost, P; Obrdlik, M; Bakkoury, E .l; Marini, A .M; Andre, B; Hamacher, T; Boles, E; Von Wiren, N and Frommer, W. B. (2003) . Homo- and hetero-oligomerization of ammonium transporter-1 NH4 uniporters J. Biol. Chem., 278: 45603-45610.
  12. Marini, A M; Springael, J Y; Frommer, W.B and. André, B. (2000). Cross-talk between NH4+ transporters in yeast and interference by the soybean SAT1 protein Mol. Microbiol., 35: 378-385.
  13. Wagner, M; Nolden, J; Jakoby, L M ; Siewe, R; Kramer, R and Burkovski A. (2001). Multiplicity of ammonium uptake systems in Corynebacterium glutamicum: role of Amt and AmtBMicrobiology., 147: 135-143.
  14. Montesinos, M.L; Muro-Pastor,A; Herrero, M.A and Flores,E. (1998). Ammonium/Methylammonium Permeases of a Cyanobacterium. identification and analysis of three nitrogen-regulated amt genes in synechocystis sp. pcc 6803j. Biol. Chem., 273:31463-31470.
  15. Nakamura, Y; Kaneko, T and Tabata, S. (2000). CyanoBase, the genome database for Synechocystis sp. strain PCC6803: status for the year 2000. Nucleic Acids Res., 28(1): 72.
  16. Ninnemann, O; Jauniaux, J.C and Frommer, W.B. (1994). Identification of a high affinity NrfJ~ transporter from plants, EMBO J., 13: 3464-3471.
  17. Paz-Yepes, J; Herrero, A and Flores E. (2007). he NtcA-Regulated amtB Gene Is Necessary for Full Methylammonium Uptake Activity in the Cyanobacterium Synechococcus elongates, J. Bacteriol., 189: 7791-7798.
  18. Paz-Yepes, J; Victoria, M. P; Antonia, H and Enrique, F. (2008). The amt Gene Cluster of the Heterocyst-Forming Cyanobacterium Anabaena sp. Strain PCC 7120 Journal of Bacteriology., 190 (19): 6534-6539.
  19. Pearson, W.R. (2000) . Flexible sequence similarity searching with the FASTA3 program package. Methods Mol. Biol., 132:185–219.
  20. Picossi, S; Montesinos, M. L; Pernil, R; Lichtle, C; Herrero, A. and Flores, E. (2005). ABC-type neutral amino acid permease N-I is required for optimal diazotrophic growth and is repressed in the heterocysts of Anabaena sp. strain PCC 7120 Mol. Microbiol., 57: 1582-1592.
  21. Rai, A. N; Rowell, P and Stewart, W. D. P. (1984). Evidence for an ammonium transport system in free living and symbiotic cyanobacteria, Arch. Microbiol., 137: 241-246
  22. Saier (Jr), M .H. (1998). Molecular phylogeny as a basis for the classification of transport proteins from bacteria, archaea and eukarya. Adv. Microbiol. Physiol., 40: 81-136
  23. Sanchez, R. and Sali, A. (1998). Large-scale protein structure modeling of the Saccharomyces cerevisiae genome. Proc Natl Acad Sci USA., 95 :13597–13602.
  24. Siewe, RM; Weil, B; Burkovski, A; Eikmanns, B.J; Eikmanns, M; Kramer, R. (1996). Functional and genetic characterization of the (methyl)ammonium uptake carrier of Corynebacterium glutamicum. J. Biol. Chem., 271: 5398-5403
  25. Sohlenkamp, C; Shelden, M; Howitt, S. and Udvardi, M. (2000). Characterization of Arabidopsis AtAMT2, a novel ammonium transporter in plantsFEBS Lett., 467: 273-278.
  26. Thomas, J. J; Meeks, C; Wolk, C. P; Shaffer, P.W; Austin, S. M. and Chien, W S. (1977). Formation of glutamine from [13N]ammonia, [13N]dinitrogen, and [14C]glutamate by heterocysts isolated from Anabaena cylindrica.J. Bacteriol., 129: 1545-1555.
  27. Willard, L; Ranjan, A; Zhang, H; Monzavi, H; Boyko, R. F; Sykes, B;David, D. and Wishart D. S. (2003). VADAR: a web server for quantitative evaluation of protein structure quality, Nucleic Acids Res., 231 (13): 3316.3319).
  28. Wolk, C .P, Thomas, J; Shaffer, P. W; Austin, S .M. and Galonsky, A. (1976).pathway of nitrogen metabolism after fixation of 13N-labelled nitrogen gasby the cyanobacterium, J. Biol. Chem., 251: 5027-5034.

Global Footprints