Indian Journal of Agricultural Research

  • Chief EditorV. Geethalakshmi

  • Print ISSN 0367-8245

  • Online ISSN 0976-058X

  • NAAS Rating 5.60

  • SJR 0.293

Frequency :
Bi-monthly (February, April, June, August, October and December)
Indexing Services :
BIOSIS Preview, ISI Citation Index, Biological Abstracts, Elsevier (Scopus and Embase), AGRICOLA, Google Scholar, CrossRef, CAB Abstracting Journals, Chemical Abstracts, Indian Science Abstracts, EBSCO Indexing Services, Index Copernicus
Indian Journal of Agricultural Research, volume 45 issue 1 (march 2011) : 169 - 178

DETECTION OF SSS GENE INVOLVED PHASE VARIATION PHENOMENON IN SOME FLUORESCENT PSEUDOMONAS AND ITS ROLE IN ROOT COLONIZATION IN WHEAT

R. Siberi Riseh, F. Bagheri, H. Rouhani, Falahati M. Rastgar
1Department of Plant Protection, College of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
  • Submitted|

  • First Online |

  • doi

Cite article:- Riseh Siberi R., Bagheri F., Rouhani H., Rastgar M. Falahati (2024). DETECTION OF SSS GENE INVOLVED PHASE VARIATION PHENOMENON IN SOME FLUORESCENT PSEUDOMONAS AND ITS ROLE IN ROOT COLONIZATION IN WHEAT. Indian Journal of Agricultural Research. 45(1): 169 - 178. doi: .
Occurrence of phase variation phenomenon in fluorescent pseudomonads resulted from the Sss and XerD recombinase activities that  are encoded by sss and xerD genes, respectively. In this research, the effects of sss gene in enabling colonizing bacterial strains of fluorescent pseudomonads were investigated. Only 25 bacterial strains of fluorescent pseudomonads subjected to examined, 7 bacterial strains Um141, Um11, Um138, Um70, Um115, UmCHN5 and Pseudomonas fluorescens F113 were able to adopt themselves to root under various growing conditions and colonized the totality of wheat root parts. Finally, these strains reached to the end part of  roots both in complete sterilized condition and in presence of Gaeumannomyces graminis var. tritici, the causal agent of take-all disease. The laboratory cultivation of these strains on King B and SA media, resulted in the appearance of colonies with various morphology. The polymeras chain reaction(PCR) experiment to monitore sss gene in 25 bacterial strains revealed that this gene was present in seven bacterial strains representing considerable root colonization.
  1. Asher, M. J. C., and Shipton, P. J. (1981) Biology and Control of Take-all. Academic Press, New York.
  2. Chabeaud, P., De Groot, A., Bitter, W., Tommassen, J., Heulin, T., and Achouak, W. 2001. Phase-variable expression of an operon encoding extracellular alkaline protease, a serine protease homolog, and lipase in Pseudomonas brassicacearum. J. Bacteriol. 183 : 2117-2120.
  3. Craig, A., and A. Scherf. (2003) Antigenic Variation. Academic Press Elsevier, Amsterdam.pp443.
  4. De Weert, S., and Blomberg, G. V. (2006) Rhizosphere competence and the role of root colonization in biocotrol. Plant-Associated Bacteria. pp 317-333.
  5. Dekkers, L.C. (1997) Isolation and characterization of novel rhizosphere colonization mutants of Pseudomonas fluorescens WCS365. Leiden University.
  6. Dekkers, L.C., Mulders, I. H., Phoelich, C. C., Chin-A-Woeng, T. F. C., Wijfjes, A.H., and Lugtenberg, B.J. (2000) The sss colonization gene of the tomato-Fusarium oxysporum f. sp. radicis-lycopersici biocontrol strain Pseudomonas fluorescens WCS365 can improve root colonization of other wild-type Pseudomonas spp. bacteria. Molecular Plant-Microbe Interactions 13: 1177-1183.
  7. Dekkers, L. C., Phoelich, C. C., van der Fits, L., and Lugtenberg, B. J. J. (1998) A site-specific recombinase is required for competitive root colonization by Pseudomonas fluorescens WCS365. Proc. National Acad. of Sci. of the United States of Amer. 95: 7051-7056.
  8. Déziel, E., Comeau, Y., and Villemur, R. (2001) Initiation of biofilm formation by Pseudomonas aeruginosa 57RP correlates with emergence of hyperpiliated and highly adherent phenotypic variants deficient in swimming, swarming, and twitching motilities. J. Bacteriol. 183: 1195–1204.
  9. Dybvig, K. (1993) DNA rearrangements and phenotypic switching in prokaryotes. Molecular Microbiol 10: 465-471.
  10. Gamalero, E., Lingua, G., Capri, F. G., Fusconi, A., Berta, G., and Lemanceau, P. 2004. Colonization pattern of primary tomato roots by Pseudomonas fluorescens A6RI characterized by dilution plating, flow cytometry, fluorescens, confocal and scanning electronmicroscopy. FEMS Microbiol. Eco. 48: 79-87.
  11. Glandorf, D. C. M., Brand, I., Bakker, P. A. H. M., and Schipper, B. (1992) Stability of rifampicin resistance as marker for root colonization studies of Pseudomonas putida in the field. Plant and soil 147: 135-142.
  12. Grewal, S. I. S., Han, B., and Johnstone, K. (1995) Identification and characterization of a locus which regulates multiple functions in Pseudomonas tolaasii, the cause of brown blotch disease of Agaricus bisporus. Journal of Bacteriology 177: 4658–4668.
  13. Henderson, I. R., Owen, P., and Nataro, J. P. (1999) Molecular switches—the on and off of bacterial phase variation. Molecular Microbiol. 33: 919–932.
  14. Keel, C., Weller, D.M., Natsch, A., De.fago, G., Cook, R.J. and Thomashow, L.S. (1996) Conservation of the 2,4-diacetylphloroglucinol biosynthesis locus among fluorescent Pseudomonas strains from diverse geographic locations. Applied and Environm. Microbiol. 62: 552-563.
  15. Lugtenberg, B. J. J., Dekkers, L. C., and Bloemberg, G. V. 2001. Molecular determinants of rhizosphere colonization by Pseudomonas. Annual Review of Phytopathology 39: 461-490.
  16. Lugtenberg, B. J. J., Dekkers, L. C., Bansraj, M., Bloemberg, G. V., Camacho, M., Chin, T., Woeng, A., van den Hondel, K., Kravchenko, L., Kuiper, I., Lagopodi, A., Mulders, L. I., Phoelich, C., Ram, A., Tikhonovich, I., Tuinman, S., Wijffelman, C., and Wijfjies, A. (1999) Pseudomonas genes and traits involved in tomato root colonization, p. 9–13. In Biology of plant-microbe interactions. International Society for Molecular Plant-Microbe P. de Wit, T. Bisseling, and W. Stiekema (ed.), Interactions, St. Paul, Minn.
  17. Martinez-Granero, F., Capdevila, S., Sanchez-Contreras, M., Martin, M., and Rivilla, R. (2005) Two site specific recombinases are implicated in phenotypic variation and competitive rhizosphere colonization in Pseudomonas fluorescens. Microbiology 151: 975–983.
  18. Mavrodi, O. V., Mavrodi, D. V., Weller, D. M., and Thomashow, L. S. (2006) Role of ptsP, orfT, and sss Recombinase Genes in Root Colonization by Pseudomonas fluorescens Q8r1-96. Applied and Environmental Microbiology 72: 7111-7122.
  19. Ownley, B. H., Duffy, B. K., and Weller, D. M. (2003) Identification and Manipulation of Soil Properties To Improve the Biological Control Performance of Phenazine-Producing Pseudomonas fluorescens. Applied Environ. Microbiol. 150: 3333-3343.
  20. Rainey, P. B., and Travisano, M. (1998) Adaptive radiation in heterogeneous environment. Nature 394: 69–72.
  21. Ramette, A., Moënne-Loccoz, Y., and Defago, G. (2002) Prevalence of fluorescent pseudomonads producing antifungal phloroglucinols and/or hydrogen cyanide in soils naturally suppressive or conducive to tobacco black root rot. FEMS Microbiology Ecology 44: 35-43.
  22. Sánchez-Contreras, M., Martin, M., Villacieros, M., and O’Gara, F. (2001) Phenotypic Selection and Phase Variation Occur during Alfalfa Root Colonization by Pseudomonas fluorescens F113. J. Bacteriol. 184: 1587-1596.
  23. Saunders, N. J., Moxon, E. R., and Gravenor, M. B. (2003) Mutation rates: estimating phase variation rates when fitness differences are present and their impact on population structure. Microbiol. 149: 485-495.
  24. Thomashow, L. S., and Weller, D. M. (1988) Role of phenazine antibiotic from Pseudomonas fluorescens in biological control of Gaeumannomyces graminis var. tritici. J. Bacteriol. 170: 3499-3508.
  25. Van den Broek, D., Chin-A-Woeng, T. F. C., Eijkemans, K., Mulders, I. H., Bloemberg, G. V. & Lugtenberg, B. J. J. (2003) Biocontrol traits of Pseudomonas spp. are regulated by phase variation. Molecular Plant-Microbe Interactions 16: 1003–1012.
  26. Van den Broek, D., G. V. Bloemberg, and B. J. J. Lugtenberg. (2005) The role of phenotypic variation in rhizosphere Pseudomonas bacteria. Environ. microbiol. 7: 1686–1697.
  27. Weiser, J. N., Goldberg, J. B., Pan, N., Wilson, L., and Virji, M. (1998) The phosphorylcholine epitope undergoes phase variation on a 43- kilodalton protein in Pseudomonas aeruginosa and on pili of Neisseria meningitidis and Neisseria gonorrhoeae. Infection and Immunity 66: 4263-4267.

Editorial Board

View all (0)