Tomato vegetative growth
Data were collected two weeks after transplanting. Data collected included plant height, number of leaves and branches. There were no significant different in the growth rate of tomato in (5, 10%) and inorganic concentrations. 20% VCL + NPK had higher value compare to the inorganic concentration (Table 1). Minimal plant height was obtained in the untreated control treatment (2.50 cm± 0.71) (Table 1). The number of leaves for all treatments had the same mean value and standard deviation a week after seedlings were acclimatized to the growth environment (Table 2). Similarly, there was no significant differences among the various parameters tested (Table 2). There were no significant differences recorded in plant height of tomato in 5% VCL + NPK, 10% VCL + NPK and the NPK treatments after 7 days. However, a significant difference in plant height was noted in the 20% treatment (Table 1)
. After 21 days, 5% VCL + NPK gave the highest plant height readings (6.10±0.894) followed by the PC treatment (Table 1). The number of leaves were higher in the 5% VC + NPK and inorganic treatments with the PC treatment showing the least number (3.20±0.447) (Table 2). At day 28 of growth, the inorganic treatment produced the tallest plants (8.08±1.176) (Table 1) compared to the other treatments at day 35 days of growth that the 5% VCL + NPK (12.4±0.822) treatment indicated greater number of leaves compared to the rest of the treatments. A similar trend was observed for the rest of the variables tested. All the results obtained with the VCL + NPK treatment was consistently higher than the PC treatment. After 56 days, the inorganic treatment (32.86±4.02) produced the best results (Table 1). The analysis of variance indicated that there were significant differences among treatments with respect to plant height and number of leaves from week three to week eight at (P<0.01) (Table 1 and 2). Tomato branches across treatments were also significantly different after week six (Table 3). It appeared that the inorganic treatment produced the best overall result.
Wet and dry weight with respect to treatments
Tomato plant were harvested from the growth media. Plant was carefully risen with tap water to remove soil from the plant. Moisture was allowed to dry off before weighing. The wet weight of the leaves, shoot and root were assessed using weigh balance. The wet weight of leaves were significant at (P<0.01) (Table 4). No significant difference was observed in wet weight of the leaf of tomato in (5, 10 and 20%) concentrations. However, a significant difference was obtained in the wet weight of tomato in NPK concentration. The wet weight of tomato shoot recorded a higher value compared to the (5, 10, 20%) concentrations. Likewise, it was found that NPK treatment had the highest value with tomato wet root. Moreover, the result obtained with (5, 10 and 20%) concentrations in wet weight of root were lower compared to the NPK treatment. The dry weight of tomato biomass were assessed from the various treatments. Plant biomass was oven dried at 60°C for 48 hours. The result obtained revealed that the dry weight of leaves was significant at (P<0.01) (Table 5). The dry weight of leaf of tomato were not significant in (5, 10, 20%) concentrations but was significant in NPK treatment. In the same vein, the dry weight of shoot of tomato was significantly higher with NPK treatment compared to the (5, 10 and 20%) concentrations. The dry weight of root obtained in (5, 10 and 20%) concentrations were lower compared to the NPK treatment (Table 5). The NPK treatment had the highest value. However, the wet and dry weight of tomato in (5, 10 and 20%) concentration were significantly higher than the untreated control (Table 5).
Number of fruits with respect to treatments
The development of flowers into fruits was noted at about 80 day after germination (Table 6). The number of tomato fruit obtained with (5, 10, 20%) concentrations were not significant compared to the number of tomato fruit obtained in NPK concentration. At week eleven, it was observed that there were no significant difference in the number of tomato fruit in (5, 10, 20%) (Table 6). Though, a significant difference was observed in NPK treatment. The number of tomato fruit found with (5, 10 and 20%) were higher compared to the untreated control (Table 6).
Fourty mL of inorganic fertilizer was added to each of the vermicompost concentrations to reduce excess nitrate which may possibly be stored in the fruit and in the soil at harvest. A better yield could be related to behavior of the plant at the two week stages after planting. This behavior is associated with the amount of nutrients in the present in the soil. In this case, efficient growth and development might be influenced by the slow release of NPK from the organic manure into the soil
(Reshid et al., 2014). Moreover, the release of these elements from the organic manure depends largely on the original feedstock, processing time and maturity
(Akashdeep et al., 2021; Campitelli andCeppi, 2008). Nutrients are required by most hybrid varieties and may result in plant nutrient deficiencies. Soil with adequate nutrient elements may create a balance with the available NPK and release nutrients from the organic compound
(Khan et al., 2017). More so, the insignificant difference with respect to plant height and number of leaves in the first two weeks may be due to poor soil structure and the slow release of NPK into the soil
(Khan et al., 2017). The application of vermicompost increases actinomycetes and microbial population of N
2 fixation. This is achieved through degradation of earthworm and mineralization of organic waste. Phosphorus and nitrogen are also induced through microbial activities (
Campitelli and Ceppi, 2008). This plays a significant role in the photosynthetic function of the plant. However, ecofriendly humus like organic substance is developed through aerobic and biological methods
(Papathanasiou et al., 2012). This is associated with a balance in organic and inorganic nutrients, moisture and optimum temperature. This is significant to health and physiochemical properties of the soil
(Khan et al., 2017). Tomato grown under hydroponics condition with a combination of organic and inorganic compounds had the highest vegetative growth. The result obtained with 5% VCL + NPK, 10% VCL + NPK and 20% VCL + NPK treatments from week three to week eight showed a significant improvement in height, number of leaves and branches compared to the control (
Rodriguez et al., 2015).