The Critical Period of Production of the Secondary Metabolite Indican in (Indigofera tinctoria L.) on Light Intensity

DOI: 10.18805/IJARe.AF-704    | Article Id: AF-704 | Page : 533-538
Citation :- The Critical Period of Production of the Secondary Metabolite Indican in (Indigofera tinctoria L.) on Light Intensity.Indian Journal of Agricultural Research.2022.(56):533-538
M.T.S. Budiastuti, D. Setyaningrum, D. Purnomo, Supriyono, B. Pujiasmanto, I.R. Manurung mariatheresia@staff.uns.ac.id
Address : Department of Agrotechnology, Faculty of Agriculture, Universitas Sebelas Maret, Surakarta, Postal Code 57126, Central Java, Indonesia.
Submitted Date : 28-10-2021
Accepted Date : 3-03-2022


Background: Indigofera tinctoria plays the role of a natural dye source that produces indigo color and contains the secondary metabolite indican which is highly responsive to light intensity. This study aims to examine the critical period for the formation of the secondary metabolite indican on light intensity.
Methods: The method used was a completely randomized block design with a split-plot design. The study consisted of 2 treatment factors, namely: length of shade (main plot) and light intensity (subplot). The length of shade included 5 levels, namely early growth phase (up to 1 month after planting), mid-growth phase (up to 2 months after planting), maximum growth phase (up to 3 months after planting), 1 month before harvest and 2 months before harvest. Light intensity had 3 levels, namely 50% light intensity (38,464.3 lux), 25% (19,232.15 lux) and 10% (7,692.86 lux).
Result: The combination of duration of shade and light intensity affected the growth, yield and content of secondary metabolites (indican) in Indigofera tinctoria. The highest number of leaves, plant fresh weight and biomass was found in the combination of shade in the early growth phase (up to 1 month after planting) with 50% light intensity. The highest indican production was found in the mid-growth shading (up to 2 months after planting) with 10% light intensity, which was 843.33 ppm. The critical period of shade to increase indican production along with the number of leaves was the mid-growth phase (up to 2 months after planting).


Indican Indoxyl-β-D glukosida Light intensity Natural dyes


  1. Angelini, L.G., Tozzi, S., O Di Nasso, N.N. (2007). Differences in leaf yield and indigo precursors production in woad [Isatis tinctoria (L.)] and Chinese woad (Isatis indigotica Fort.) genotypes. Field Crops Research. 101: 285-295. DOI: 10.1016/j.fcr.2006.12.004.
  2. Angelini, L.G., Tozzi, S., o Di Nasso, N.N. (2004b). Environmental factors affecting productivity, indican content and indigo yield in Polygonum tinctorium Ait., a subtropical crop grown under temperate conditions. Journal of Agricultural and Food Chemistry. 52: 7541-7547. DOI: 10.1021/ jf040312b.
  3. Azaman, S.N.A., Wong, D.C., Tan, S.W., Yusoff, F.M., Nagao, N., Yeap, S.K. (2020). De novo transcriptome analysis of Chlorella sorokiniana: Effect of glucose assimilation and moderate light intensity. Scientific Reports. 10: 1-12. DOI: 10.1038/s41598-020-74410-4.
  4. Budiastuti, M.T.S., Purnomo, D., Pujiasmanto, B., Setyaningrum, D. (2021). Effect of light intensity on growth, yield and indigo content of (Indigofera tinctoria L.) IOP Conf. Series: Earth and Environmental Science. 724: 1-8. DOI: 10.1088/1755-1315/724/1/012085.
  5. Budiastuti, M.T.S., Purnomo, D., Supriyono, S., Pujiasmanto, B., Setyaningrum, D. (2021). Effects of light intensity and co-inoculation of arbuscular mycorrhizal fungi and rhizobium on root growth and nodulation of Indigofera tinctoria. Sains Tanah. 17: 94-99. DOI: 10.20961/STJS SA.V17I2.40065.
  6. Campeol, E., Angelini, L.G., Tozzi, S., Bertolacci, M. (2006). Seasonal variation of indigo precursors in (Isatis tinctoria L.) and Polygonum tinctorium Ait. as affected by water deficit. Environmental and Experimental Botany. 58: 223- 233. DOI: 10.1016/j.envexpbot.2005.09.006.
  7. Coelho, G.C., Rachwal, M.F., Dedecek, R.A., Curcio, G.R., Nietsche, K., Schenkel, E.P. (2007). Effect of light intensity on methylxanthine contents of Ilex paraguariensis A. St. Hil. Biochemical Systematics and Ecology. 35: 75-80. DOI: 10.1016/j.bse.2006.09.001.
  8. Folta, K.M. and Carvalho, S.D. (2015). Photoreceptors and control of horticultural plant traits. HortScience. 50(9): 1274- 1280. 
  9. Ghorbanzadeh, P., Aliniaeifard, S., Esmaeili, M., Mashal, M., Azadegan, B., Seif, M. (2021). Dependency of growth, water use efficiency, chlorophyll fluorescence and stomatal characteristics of lettuce plants to light intensity. Journal of Plant Growth Regulation. 40: 2191-2207. DOI: 10.1007/s00344-020-10269-z.
  10. Inoue, S., Moriya, T., Morita, R., Kuwata, K., Thul, S.T., Sarangi, B.K.,  Minami, Y. (2017). Characterization of UDP-glucosyltransferase from Indigofera tinctoria. Plant Physiology and Biochemistry. 121: 226-233. doi: 10.1016/ j.plaphy.2017.11.002.
  11. Inoue, S., Morita, R., Kuwata, K., Kunieda, T., Ueda, H., Hara- Nishimura, I., Minami, Y. (2018). Tissue-specific and intracellular localization of indican synthase from Polygonum tinctorium. Plant Physiology and Biochemistry. 132: 138-144. DOI: 10.1016/j.plaphy.2018.08.034.
  12. Inoue, S., Morita, R., Kuwata, K., Ishii, K.,  Minami, Y. (2020). Detection of candidate proteins in the indican biosynthetic pathway of Persicaria tinctoria (Polygonum tinctorium) using protein-protein interactions and transcriptome analyses. Phytochemistry. 179: 112507. DOI: 10.1016/ j.phytochem.2020.112507.
  13. Inoue, S., Morita, R. and Minami, Y. (2021). An indigo-producing plant, Polygonum tinctorium, possesses a flavin-containing monooxygenase capable of oxidizing indole. Biochemical and Biophysical Research Communications. 534: 199-205. DOI: 10.1016/j.bbrc.2020.11.112.
  14. Irshad, M., Debnath, B., Mitra, S., Arafat, Y., Li, M., Sun, Y.,  Qiu, D. (2018). Accumulation of anthocyanin in callus cultures of red-pod okra [Abelmoschus esculentus (L.) Hongjiao] in response to light and nitrogen levels. Plant Cell, Tissue and Organ Culture. 134: 29-39. DOI: 10.1007/s11240- 018-1397-6.
  15. Konvalinková, T., Püschel, D., Janoušková, M., Gryndler, M., Jansa, J. (2015). Duration and intensity of shade differentially affects mycorrhizal growth-and phosphorus uptake responses of Medicago truncatula. Frontiers in Plant Science. 6: 1-11. DOI: 10.3389/fpls.2015.00065.
  16. Kozai, T.D., Jaquins-Gerstl, A.S., Vazquez, A.L., Michael, A.C. and Cui, X.T. (2016). Dexamethasone retrodialysis attenuates microglial response to implanted probes in vivo. Biomaterials. 87: 157-169. 
  17. Li, Y., Liu, Y., Wu, S., Wang, C., Xu, A., Pan, X. (2017). Hyper- spectral estimation of wheat biomass after alleviating of soil effects on spectra by non-negative matrix factorization. European Journal of Agronomy. 84: 58-66. DOI: 10.1016/j.eja.2016.12.003.
  18. Li, Y., Kong, D., Fu, Y., Sussman, M.R., Wu, H. (2020). The effect of developmental and environmental factors on secondary metabolites in medicinal plants. Plant Physiology and Biochemistry. 148: 80-89. DOI: 10.1016/ j.plaphy.2020.01.006.
  19. Lugassi-Ben-Hamo, M., Kitron, M., Bustan, A., Zaccai, M. (2010). Effect of shade regime on flower development, yield and quality in lisianthus. Scientia Horticulturae. 124: 248-253. DOI: 10.1016/j.scienta.2009.12.030.
  20. Maugard, T., Enaud, E., Choisy, P.  Legoy, M.D. (2001). Identification of an indigo precursor from leaves of Isatis tinctoria (Woad). Phytochemistry. 58(2001) 897-904.pdf’, 58, pp. 897-904.
  21. Minami, Y., Takao, H., Kanafuji, T., Miura, K., Kondo, M., Hara- Nishimura, I., Nishimura, M., Matsubara, H. (1997). β-Glucosidase in the indigo plant: Intracellular localization and tissue specific expression in leaves. Plant and Cell Physiology. 38: 1069-1074. DOI: 10.1093/oxfordjournals. pcp.a029273.
  22. Muzzazinah, Chikmawati, T. and Ariyanti, N.S. (2016). Correlation of Morphological Characteristics with the Presence of Indicant in Indigofera sp. Dyestuff (Korelasi Ciri Morfologi dengan Kehadiran Indikan dalam Bahan Pewarna Indigofera sp.). Sains Malaysiana. 45: 883-890.
  23. Nakai, A., Tanaka, A., Yoshihara, H., Murai, K., Watanabe, T., Miyawaki, K. (2020). Industrial Crops  Products Blue LED light promotes indican accumulation and flowering in indigo plant, Polygonum tinctorium. Industrial Crops  Products, 155: 112774. DOI: 10.1016/j.indcrop. 2020. 11 2774.
  24. Nocchi, N., Duarte, H.M., Pereira, R.C., Konno, T.U.P., Soares, A.R. (2020). Effects of UV-B radiation on secondary metabolite production, antioxidant activity, photosynthesis and herbivory interactions in Nymphoides humboldtiana (Menyanthaceae). Journal of Photochemistry and Photobiology B: Biology. 212: 112021. DOI: 10.1016/ j.jphotobiol.2020.112021.
  25. Prinsloo, G. and Nogemane, N. (2018). The effects of season and water availability on chemical composition, secondary metabolites and biological activity in plants. Phytochemistry Reviews. 17: 889-902. DOI: 10.1007/s11101-018-9567-z.
  26. Raffo, A., Mozzanini, E., Nicoli, S.F., Lupotto, E., Cervelli, C. (2019). Effect of light intensity and water availability on plant growth , essential oil production and composition in Rosmarinus officinalis L .European Food Research and Technology, (0123456789). DOI: 10.1007/s00217-019-03396-9.
  27. Roeber, V.M., Bajaj, I., Rohde, M., Schmülling, T. and Cortleven, A. (2021). Light acts as a stressor and influences abiotic and biotic stress responses in plants. Plant, Cell and Environment. 44(3): 645-664. 
  28. Setyaningrum, D. et al. (2020). Light Intensity and Biofertilizers Effect on natural indigo production and nutrient uptake of Indigofera tinctoria L. Indian Journal of Agricultural Research. 54: 578-584. DOI: 10.18805/ijare.a-507.
  29. Setyaningrum, D., Budiastuti, M.T.S., Pujiasmanto, B., Purnomo, D. (2021). Morphological and physiological responses of [Indigofera tinctoria (L.)] to light intensity. E3S Web of Conferences. 226: 1-8. DOI: https://doi.org/10.1051/ e3sconf/202122600013.
  30. Shafiq, I., Hussain, S., Raza, M.A., Iqbal, N., Asghar, M.A., Raza, A., Yuan-fang, F., Mumtaz, M., Shoaib, M., Ansar, M., Manaf, A., Wen-Yu, Y., Feng, Y. (2021). Crop photosynthetic response to light quality and light intensity. Journal of Integrative Agriculture. 20: 4-23. DOI: 10.1016/S2095-3119(20)63227-0.
  31. Siddiqui, H., Sami, F. and Hayat, S. (2020). Glucose: Sweet or bitter effects in plants-a review on current and future perspective. Carbohydrate Research. Elsevier Ltd. DOI: 10.1016/j.carres.2019.107884.
  32. Stoker, K.G., Cooke, D.T. and Hill, D.J. (1998). Influence of light on natural indigo production from woad (Isatis tinctoria). Plant Growth Regulation. 25: 181-185. DOI: 10.1023/ A:1006042331385.
  33. Thoma, F., Somborn-Schulz, A., Schlehuber, D., Keuter, V.,  Deerberg, G. (2020). Effects of Light on Secondary Metabolites in Selected Leafy Greens: A Review. Frontiers in Plant Science. 11: 1-15. DOI: 10.3389/fpls.2020.00497.
  34. Tilbrook, K., Arongaus, A.B., Binkert, M., Heijde, M., Yin, R. and Ulm, R. (2013). The UVR8 UV-B photoreceptor: Perception, signaling and response. The Arabidopsis book/American Society of Plant Biologists, 11. 
  35. Tozzi, S., Lercari, B. and Angelini, L.G. (2005). Light quality influences indigo precursors production and seed germination in [Isatis tinctoria (L.)] and Isatis indigotica Fort. Photochemistry and Photobiology. 81: 914. DOI: 10.1562/2004-08-03-ra-258r1.1.
  36. Wang, Z., Xiao, S., Wang, Y., Liu, J., Ma, H., Wang, Y., Tian, Y.,  Hou, W. (2020). Effects of light irradiation on essential oil biosynthesis in the medicinal plant Asarum heterotropoides Fr. Schmidt var. mandshuricum (Maxim) Kitag. PLoS ONE. 15: 1-17. DOI: 10.1371/journal.pone. 0237952.
  37. Wongshaya, P., Chayjarung, P., Tothong, C., Pilaisangsuree, V., Somboon, T., Kongbangkerd, A., Limmongkon, A. (2020). Effect of light and mechanical stress in combination with chemical elicitors on the production of stilbene compounds and defensive responses in peanut hairy root culture. Plant Physiology and Biochemistry. 157: 93-104. DOI: 10.1016/j.plaphy.2020.10.015.
  38. Wu, E., Komolpis, K. and Wang, H.Y. (1999). Chemical extraction of indigo from Indigofera tinctoria while attaining biological integrity. Biotechnology Techniques. 13: 567-569. DOI: 10.1023/A:1008952016185.
  39. Wu, Y., Yang, F., Gong, W., Ahmed, S., Fan, Y., Wu, X., Yong, T., Liu, W., Shu, K., Liu, J., Du, J. Yang, W. (2017). Shade adaptive response and yield analysis of different soybean genotypes in relay intercropping systems. Journal of Integrative Agriculture. 16: 1331-1340. DOI: 10.1016/ S2095-3119(16)61525-3.
  40. Yang, F., Feng, L., Liu, Q., Wu, X., Fan, Y., Raza, M. A., Cheng, Y., Chen, J., Wang, X., Yong, T., Liu, W., Liu, J., Du, J., Shu, K., Yang, W. (2018). Effect of interactions between light intensity and red-to- far-red ratio on the photosynthesis of soybean leaves under shade condition. Environmental and Experimental Botany. 150: 79-87. DOI: 10.1016/j.envexpbot.2018.03.008.

Global Footprints