Indian Journal of Agricultural Research

  • Chief EditorT. Mohapatra

  • Print ISSN 0367-8245

  • Online ISSN 0976-058X

  • NAAS Rating 5.60

  • SJR 0.293

Frequency :
Bi-monthly (February, April, June, August, October and December)
Indexing Services :
BIOSIS Preview, ISI Citation Index, Biological Abstracts, Elsevier (Scopus and Embase), AGRICOLA, Google Scholar, CrossRef, CAB Abstracting Journals, Chemical Abstracts, Indian Science Abstracts, EBSCO Indexing Services, Index Copernicus
Indian Journal of Agricultural Research, volume 55 issue 5 (october 2021) : 519-526

Phytochemical Content, Antioxidant and Antimicrobial Effects of Thapsia garganica L. Leaves and Roots Grown Wild in North-west Algeria

Aici Djahida, Benmehdi Houcine
1Laboratory of Chemistry and Environmental Sciences, Department of Biology, University Tahri Mohamed, Bechar-08000, Algeria.
Cite article:- Djahida Aici, Houcine Benmehdi (2021). Phytochemical Content, Antioxidant and Antimicrobial Effects of Thapsia garganica L. Leaves and Roots Grown Wild in North-west Algeria. Indian Journal of Agricultural Research. 55(5): 519-526. doi: 10.18805/IJARe.A-648.
Background: Oxygen-centre free radicals and other reactive oxygen species (ROS) are continuously produced in vivo, resulting in cell death and tissues damage. Besides, the increasing resistance to existing antimicrobial agents has become a major problem. The present study aims to evaluate the antioxidant and antimicrobial activities of the Thapsia garganica L. leaves and roots. 
Methods: Broth dilution and single spore methods were developed and seven microorganisms were used. The evaluation was performed by measuring the diameter of the growth inhibition zones around the holes via the determination of the inhibition percentage of mycelium growth. 
Result: The determination of the polyphenol contents, total flavonoids and condensed tannins of the aqueous extract for both leaves and roots gave respectively (2.21 mg, 2.63 mg/100 mg gallic acide equivalents), (2.39 mg, 0.49 mg/100 mg catechin equivalent), (0.12 mg, 0.04 mg/100 mg catechin equivalent) in dry matter. The results of antioxidant activity showed that the methanolic, flavonoids and tannins extracts showed a potent scavenging activity with IC50 = 0.41; 0.81; 1.39; 1.80 and 1.90 mg/ml, respectively. As regards for antimicrobial activity, an important inhibition of the proposed extracts has been observed against the tested strains.

  1. Alghazeer, R., El-Saltani, H., Saleh, N., Al-Najjar, A., Hebail, F. (2012). Antioxidant and antimicrobial properties of five medicinal Libyan plants extracts. Natural Sciences. 4: 324.

  2. Alothman, M., Bhat, R., Karim, A.A. (2009). Antioxidant capacity and phenolic content of selected tropical fruits from Malaysia, extracted with different solvents. Food Chemistry. 115: 785-88.

  3. Andreotti, C., Ravaglia, D., Ragaini, A., Costa, G. (2008). Phenolic compounds in peach (Prunus persica) cultivars at harvest and during fruit maturation. Annals of Applied Biology. 153: 11-23.

  4. Bahorun, T. (1998). Substances naturelles actives: la flore mauricienne, une source d’approvisionnement potentielle. In Second Annual Meeting of Agricultural Scientists. 83.

  5. Barry, A. L. (1976). Methods for Testing Antimicrobial Combinations. The Antimicrobial Susceptibility Test: Principles and Practices. Lea and Febiger, Philadelphia, 105.

  6. Bekkara, F., Jay, M., Viricel, M.R., Rome, S. (1998). Distribution of phenolic compounds within seed and seedlings of two Vicia faba cvs differing in their seed tannin content and study of their seed and root phenolic exudations. Plant and Soil. 203: 27-36.

  7. Benhammou, N., Ghambaza, N., Benabdelkader, S., Atik-Bekkara, F., Panovska, F.K. (2013). Phytochemicals and antioxidant properties of extracts from the root and stems of Anabasis articulata. International Food Research Journal. 20: 2057.

  8. Beniwal, P. and Jood, S. (2014). Total phenolic content and antioxidant activity of by-products from cereal and legume milling industries. Asian Journal of Dairy and Food Research. 33: 307-310.

  9. Bruneton, J. (1999). Pharmacognosy, Phytochemistry, Medicinal Plants. 3rd ed. France: Paris:  Lavoisier Publisher.

  10. Casiglia, S., Riccobono, L., Bruno, M., Rosselli, S., Senatore, F., Senatore, F. (2016). Chemical composition of the essential oil from Thapsia garganica L. (Apiaceae) grown wild in Sicily and its antimicrobial activity. Natural Product Research. 30: 1042-52.

  11. Farjana, A., Zerin, N., Kabir, M.S. (2014). Antimicrobial activity of medicinal plant leaf extracts against pathogenic bacteria. Asian Pacific Journal of Tropical Disease. 4: S920-23.

  12. Halliwell, B., Aeschbach, R., Löliger, J., Aruoma, O.I. (1995). The characterization of antioxidants. Food and Chemical Toxicology. 33: 601-17.

  13. Harborne, J.B. (1998). Phenolic compounds. Phytochem Methods. 37-99. 

  14. Iqbal, Z., Sajid, M.S., Abbas, R.Z., Sindhu, Z.U.D. (2011). Determination of condensed tannin contents from different plants of Kherimurat Rangeland (Attock, Pakistan). Journal of Agriculture and Social Research. 7: 114-16.

  15. Kabouche, A., Kabouche, Z., Seguin, E., Tillequin, F., Bruneau, C. (2005). A phenylethanoid glycoside and flavonoids from Phlomis crinita (Cav.) (Lamiaceae). Biochemical Systematics and Ecology. 8: 813-16. 

  16. Kanoun, K. (2011). Contribution à l’étude phytochimique et activité antioxydante des extraits de Myrtus communis L. (Rayhane) de la région de Tlemcen (Honaine). Magister dissertation. Abou Bekr Belkaid Tlemcen University-Algeria. 

  17. Kiran, S., Johnson, J.B., Mani, J.S., Portman, A., Mizzi, T. and Naiker, M. (2021). Commercial lentils (Lens culinaris) provide antioxidative and broad-spectrum anti-cancerous effects. Legume Research. 44(2): 202-206.

  18. Kokate, C.K. (1994).  Pratical Pharmacognosy. 4th ed. New Delhi: Vallabh Prakan. 

  19. Ksouri, R., Megdiche, W., Falleh, H., Trabelsi, N., Boulaaba, M., Smaoui, A., et al. (2008). Influence of biological, environmental and technical factors on phenolic content and antioxidant activities of Tunisian halophytes. Comptes Rendus-Biologies. 331: 865-73. 

  20. Lamaison, J.L., Carnart, A. (1991). Teneurs en principaux falvonoïdes des fleurs et des feuilles de Crataegus monogyna Jacq. et de Crataegus laevigata (Poiret) DC. en fonction de la période de végétation. Plantes médicinales et phytothérapie. 25: 12-16.

  21. Lim, S.F., Pah, P.Y.L., Chua, S.N., Kuan, H.T. (2017).  Optimisation of water soluble essential oil from lemongrass leaves using steam distillation. Pertanika Journal of Science and Technology. 25:137-43.

  22. Lrhorfi, L.A., Dahmani, F.Z., Elyahyoui, O., Berrani, A., Samama, A., Kerrouri, S., et al. (2016). The secondary metabolites composition of extracts Genista Quadriflora of Morocco. European Scientific Journal. 12: 79-88.

  23. Manzocco, L., Anese, M., Nicoli, M.C. (1998). Antioxidant properties of tea extracts as affected by processing. LWT-Food Science and Technology. 31: 694-98.

  24. Michiels, J.A., Kevers, C., Pincemail, J., Defraigne, J.O., Dommes, J. (2012). Extraction conditions can greatly influence antioxidant capacity assays in plant food matrices. Food Chemistry. 130: 986-93.

  25. Naczk, M., Shahidi, F. (2006). Phenolics in cereals, fruits and vegetables: Occurrence, extraction and analysis. Journal of Pharmaceutical and Biomedical Analysis. 41: 1523-42.

  26. Oksman-Caldentey, K.M., Inzé, D. (2004). Plant cell factories in the post-genomic era: new ways to produce designer secondary metabolites. Trends in Plant Science. 9: 433-40.

  27. Oyaizu, M. (1986). Studies on products of browning reaction. The Japanese Journal of Nutrition and Dietetics. 44: 307-15.

  28. Philippe, S., Souaïbou, F., Guy, A., Sébastien, D.T., Boniface, Y., Paulin, A., et al. (2012). Chemical composition and antifungal activity of essential oil of fresh leaves of Ocimum gratissimum from benin against six mycotoxigenic fungi isolated from traditional cheese wagashi. Research Journal of Biological Sciences. 1: 22-27.

  29. Porter, L.J. (1986). Number-and weight-average molecular weights for some proanthocyanidin polymers (condensed tannins). Australian Journal of Chemistry. 39(4): 557-62. 

  30. Pujadas-Salvà, A.J., Plaza-Arregui, L. (2003). Studies on Thapsia (Apiaceae) from north-western Africa: a forgotten and a new species. Botanical Journal of the Linnean Society. 143: 433-42.

  31. Rates, S.M.K. (2001). Plants as source of drugs. Toxicon. 39: 603-13.

  32. Rigano, D., Arnold, N.A., Conforti, F., Menichini, F., Formisano, C., Piozzi, F., et al. (2011). Characterisation of the essential oil of Nepeta glomerata Montbret et Aucher ex Bentham from Lebanon and its biological activities. Natural Product Research. 25: 614-26.

  33. Rubal, J.J., Moreno-Dorado, F.J., Guerra, F.M., Jorge, Z.D., Saouf, A., Akssira, M. et al. (2007). A pyran-2-one and four meroterpenoids from Thapsia transtagana and their implication in the biosynthesis of transtaganolides. Phytochemistry. 68: 2480-86.

  34. Saritha, B., Karpagam, S. (2014). Studies on antioxidant activity, phenol and flavonoid content of Pisonia alba span. Asian Journal of Pharmaceutical and Clinical Research. 7: 106-09.

  35. Senel, S. N., Erdem, T.L., Ozcan, I., Uslu, E. and Oguz, N. (2018). Increase of free radical levels in the periodontal tissues of therapeutic dose radiation applied rats and potential protective effects of bioflavonoids and polyphenols (ENOANT®). Indian Journal of Animal Research. 52(12): 1774-1777.

  36. Singleton, V.L., Orthofer, R., Lamuela-Raventós, R.M. (1999). Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent. Methods in Enzymology. 299: 152-78. 

  37. Tlili, N., Mejri, H., Lajnef, H.B, Feriani, A., Khaldi, A., Nasri, N. (2015). Unexploited Thapsia garganica, Orlaya maritima and Retama raetam seeds: Potential sources of unsaturated fatty acid and natural antioxidants. Journal of the American Oil Chemists’ Society. 92: 1175-81.

  38. Wannes, W.A., Mhamdi, B., Sriti, J., Jemia, M.B., Ouchikh, O., Hamdaoui, G., et al. (2010). Antioxidant activities of the essential oils and methanol extracts from myrtle (Myrtus communis var. italica L.) leaf, stem and flower. Food and Chemical Toxicology. 48: 1362-70.

  39. Waterman, P.G., Mole, S. (1994). Analysis of Phenolic Plant Metabolites: Blackwell Scientific Publications.

  40. Weitzel, C., Rønsted, N., Spalik, K. and Simonsen, H.T. (2014). Resurrecting deadly carrots: Towards a revision of Thapsia (Apiaceae) based on phylogenetic analysis of nrITS sequences and chemical profiles. Botanical Journal of the Linnean Society. 174(4): 620-636.

  41. Xiao, M., Zhang, Y., Chen, X., Lee, E.J., Barber, C.J., Chakrabarty, R., et al. (2013). Transcriptome analysis based on next-generation sequencing of non-model plants producing specialized metabolites of biotechnological interest. Journal of Biotechnology. 166: 122-34.

  42. Zhang, L., Chen, J., Wang, Y., Wu, D., Xu, M. (2010). Phenolic extracts from Acacia mangium bark and their antioxidant activities. Molecules. 15: 3567-77.

  43. Zhang, S.Y., Zheng, C.G., Yan, X.Y., Tian, W.X. (2008). Low concentration of condensed tannins from catechu significantly inhibits fatty acid synthase and growth of MCF-7 cells. Biochemical and Biophysical Research Communications. 371: 654-58.

Editorial Board

View all (0)