Loading...

Initiation of Flowering and Bulbils in Shallot with Various Treatments in Tropical Regions

DOI: 10.18805/IJARe.A-621    | Article Id: A-621 | Page : 416-421
Citation :- Initiation of Flowering and Bulbils in Shallot with Various Treatments in Tropical Regions.Indian Journal of Agricultural Research.2021.(55):416-421
E. Triharyanto, B. Pujiasmanto, G.C. Handoyo eddytriharyanto@staff.uns.ac.id
Address : Departement Agrotechnology, Faculty of Agriculture, Universitas Sebelas Maret, Jl. Ir. Sutami 36A, Jebres, Surakarta, Central Java, Indonesia.
Submitted Date : 15-02-2021
Accepted Date : 22-05-2021

Abstract

Background: Shallots are one of the horticultural commodities with low production growth value in Indonesia. Shallots production in Indonesia is limited by the quality of planting material and the climate, especially temperature. The flowering of shallots is a significant obstacle to the regulation of tuber development and bulbils. This study aimed to examine the effect of treatment on the initiation of flowering and the formation of bulbils. 
Methods: The method used was a complete randomized block design with six treatments: without treatment, vernalization at 5oC, Immersion GA3 100 ppm, Immersion IAA 100 ppm, Immersion NAA 100 ppm, injury to the flower stalk and three replications. 
Result: The treatment of flowering initiation and the formation of bulbils had a significant effect on the flowering day, the number of flower stalks, the percentage of flowering plants, number weight of bulbils and weight of bulbils. GA3 and vernalization can speed up the appearance of flowers and increase the percentage of flowering plants. GA3 and the opening of the flower stalks can encourage the formation of bulbils with a higher weight and diameter of the tubers. The flowering day had a negative correlation with the number of bulbils formed. Bulbils formation requires a higher content of endogenous GA3. GA3 can initiate the flowering and formation of shallot bulbils.

Keywords

GA3 Hormone Low temperature Stalk injury Vernalization.

References

  1. Atif, M.J., Ahanger, M.A., Amin, B., Ghani, M.I., Ali, M., Cheng, Z. (2020). Mechanism of allium crops bulb enlargement in response to photoperiod/ : A Review. International Journal of Molecular Sciences. 21(1325): 1-25. https://doi.org/10.3390/ijms21041325
  2. Statistical Yearbook of Indonesia. (2019). Indonesian shallot production 2019. BPS-Statistics Indonesia. Online, Jakarta.
  3. Chang, M., Huang, C. (2018). Effects of GA3 on promotion of flowering in Kalanchoe spp . Scientia Horticulturae. 238 (April): 7-13. https://doi.org/10.1016/j.scienta.2018.04.001.
  4. Cheng, Y., Zhao, Y. (2007). A Role for auxin in flower development. Journal of Integrative Plant Biology. 49(1): 99-104. https://doi.org/10.1111/j.1672-9072.2007.00412.x.
  5. Cole, J.C., Smith, M.W., Penn, C.J., Associate, F., Cheary, B.S., Agriculturist, S., Conaghan, K.J. (2016). Nitrogen, phosphorus, calcium , and magnesium applied individually or as a slow release or controlled release fertilizer increase growth and yield and affect macronutrient and micronutrient concentration and content of field-grown tomato plants. Scientia Horticulturae. 211: 420-430. https://doi.org/10.1016/j.scienta.2016.09.028.
  6. Dianawati, M., Haryati, Y., Yulyatin, A., Rosliani, R. (2021). Input saving technology package of true seed of shallot (TSS) production in Indonesia. E3S Web of Co,nferences. 03004: 1-10. https://doi.org/https://doi.org/10.1051/e3sconf/202123203004.
  7. Dinarti, D., Purwoko, B.S., Purwito, A., Susila, D. (2011). Micropro-pagation on several bulb storage periods and shallot micro bulb induction on two different temperatures. Journal Agronomi Indonesia. 39(2): 97-102.
  8. Elfving, D.O.N.C., Visser, D.B., Henry, J.L. (2011). Gibberellins stimulate lateral branch development in young sweet cherry trees in the orchard. International Journal of Fruit Science. 11: 41-54. https://doi.org/10.1080/15538362.2011.554066.
  9. Ewing, E.E., Science, V., Struik, P.C. (1992). Tuber formation in potato/ : induction , initiation and growth *. Horticultural Reviews. 14: 89-198.
  10. Fornara, F., Montaigu, A. De, Coupland, G., Fornara, F., Montaigu, A. De, Coupland, G. (2010). SnapShot/ : Control of Flowering in Arabidopsis SnapShot/ : Control of Flowering in Arabidopsis. Cell. 141(April 3): 3-5. https://doi.org/10.1016/ j.cell.2010.04.024.
  11. Fragoso-jimenez, J.C., Silva-morales, J., Barba-gonzalez, R., Tapia-campos, E., Claudia, M. (2021). Temperature effects on meristem differentiation and flowering date in tuberose (Agave amica L .). Scientia Horticulturae. 275 (May 2020). (https://doi.org/10.1016/j.scienta.2020.109663.
  12. Galvao, V.C., Horrer, D., Kuttner, F., Schmid, M. (2012). Spatial control of flowering by DELLA proteins in Arabidopsis thaliana. Development. 139 (21): 4072-4082. https://    doi.org/10.1242/dev.080879
  13. Golubkina, N., Zamana, S., Seredin, T., Poluboyarinov, P., Sokolov, S., Baranova, H., Krivenkov, L., Pietrantonio, L. (2019). Effect of selenium biofortification and beneficial microorganism inoculation on yield, quality and antioxidant properties of shallot bulbs. Plants. 8(102): 1-16. https://doi.org/10.3390/plants8040102.
  14. Guan, Y., Xue, J., Xue, Y., Yang, R., Wang, S., Zhang, X. (2019). Effect of exogenous GA3 on flowering quality, endogenous hormones, and hormone- and flowering-associated gene expression in forcing-cultured tree peony (Paeonia suffruticosa). Journal of Integrative Agriculture. 18(6): 1295-1311.https://doi.org/10.1016/S2095-3119(18)62131-8.
  15. Guevara-figueroa, T., Lopez-Hernandez, L., Lopez, M., Hurtado, M.D., Vazquez-Barrios, M., Guevara-Olvera, L., Guevara Gonzalez, R., Rivera-Pastrana, D., Torres-Robles, H., Mercado-Silva, E. (2018). Conditioning garlic “ seed “ cloves at low temperature modifies plant growth, sugar, fructan content and sucrose sucrose fructosyl transferase (1-SST) expression. Scientia Horticulturae.189(February). 150-158. https://doi.org/10.1016/j.scienta.2015.03.030.
  16. Hong-jiu, L.I.U., Cai-ping, H., Pei-jiang, T., Xue, Y., Ming-ming, C. U.I., Zhi-hui, C. (2020). Response of axillary bud development in garlic (Allium sativum L.) to seed cloves soaked in gibberellic acid (GA3) solution. Journal of Integrative Agriculture. 19(4): 1044-1054. https://doi.org/10.1016/S2095-3119(20)63156-2
  17. Jackson, S.D. (1999). Update on development multiple signaling pathways control tuber induction in potato. Plant Physiology. 119(January 1999): 1-8. http://www.plantphysiol.org/content/plantphysiol/119/1/1.full.pdf
  18. King, R.W., Mander, L.N., Asp, T., Macmillan, C.P., Blundell, C.A. (2008). Selective deactivation of gibberellins below the shoot apex is critical to flowering but not to stem elongation of lolium. Molecular Plant. 1(2): 295-307. https://doi.org/10.1093/mp/ssm030.
  19. Kopec, A., Skoczylas, J., Jedrszczyk, E., Francik, R., Bystrowska, B., Zawistowski, J. (2020). Chemical composition and concentration of bioactive compounds in garlic cultivated from air bulbils. Agriculture. 10(40): 1-15. https://doi.org/doi:10.3390/agriculture10020040.
  20. Kurtar, E.S., Ayan, A.K. (2005). Effects of gibberellic acid (GA3) and indole acetic acid ( IAA ) on flowering, stalk elongation and bulb characteristics of tulip (Tulipa gesneriana var. Cassini). Pakistan Journal of Biological Sciences. 8(2): 273-277.
  21. Li, J., Zhao, X., Nishimura, Y., Fukumoto, Y. (2010). Correlation between Bolting and Physiological Properties in Chinese Cabbage (Brassica rapa L. pekinensis Group). Journal of the Japanese Society for Horticultural Science. 79(3): 294-300. https://doi.org/https://doi.org/10.2503/jjshs1.79.294.
  22. Liu, Y., Chen, X., Wang, X., Fang, Y., Zhang, Y. (2019). The in fluence of different plant hormones on biomass and starch accumulation of duckweed/: A renewable feedstock for bioethanol production. Renewable Energy. 138: 659-665. https://doi.org/10.1016/j.renene.2019.01.128.
  23. Luis, R., Aparecido, V., Roberto, G., Douglas, Z., Pacheco, H., Fraga, D.F., Pedro, M. (2015). Efficient elimination of virus complex from garlic (Allium sativum L.) by cryotherapy of shoot tips. Acta Physiol Plant. 37(1733): 1-11. https://doi.org/10.1007/s11738-014-1733-3.
  24. Medina-alonso, M.G., Navas, J.F., Cabezas, J.M., Weiland, C.M., Ríos-mesa, D., Lorite, I.J., León, L., De, R. (2020). Differences on flowering phenology under Mediterranean and Subtropical environments for two representative olive cultivars. Environmental and Experimental Botany. 180(August): 104239.https://doi.org/10.1016/j.envexpbot. 2020.104239.
  25. Mojtahedi, N., Masuda, J., Hiramatsu, M., Thi, N., Hai, L., Okubo, H. (2013). Role of temperature in dormancy induction and release in one-year-old seedlings of lilium longiflorum populations. Journal of the Japanese Society for Horticultural Science. 82(1): 63-68.
  26. Nazeer, A., Hussain, K., Hassain, A., Nawaz, K. and Bashir, Z. (2020). Influence of foliar applications of IAA , NAA and GA 3 on growth yield and quality of pea (Pisum sativum L.). Indian Journal of Agricultural Research. 54(6): 699-707.
  27. Neved’eva, E.E., Mazey, N.G. (2009). Gibberellin A3 detection in plants with high-performance liquid chromatography. Applied Biochemistry and Microbiology. 45: 454-458.
  28. Nguyen, C.T., Dang, L.H., Nguyen, D.T., Tran, K.P. (2019). Effect of GA3 and Gly plant growth regulators on productivity and sugar content of sugarcane. Agriculture. 9(136): 1-13. https://doi.org/10.3390/agriculture9070136.
  29. Ni, J., Gao, C., Chen, M.S., Pan, B.Z., Ye, K., Xu, Z. (2015). Gibberellin promotes shoot branching in the perennial woody plant jatropha curcas. Plant and Cell Physiology. 56(8): 1655-1666. https://doi.org/10.1093/pcp/pcv089
  30. Nikmah, Z.C., Slamet, W. (2017). Application of silica and NAA to the growth of the Moon Orchid (Phalaenopsis amabilis L.) at the acclimatization stage. Journal of Agro Complex. 1(October): 101-110.
  31. Nishijima, T., Sugii, H., Fukino, N. (2005). Aerial tubers induced in turnip (Brassica rapa L. var. rapa (L.)Hartm.) by gibberellin treatment. Scientia horticulturae. 105: 423-433. https://doi.org/10.1016/j.scienta.2005.02.005
  32. Oh, H.G., Lee, J.W., Lee, G.J., Park, J.S. (2018). Effect of gibberellin treatment on growth and flowering characteristics in the cultivation of Aquilegia japonica nakai and H. Hara. Korean Journal of Plant Resources. 31(6): 59-596. https://doi.org/https://doi.org/10.7732/kjpr.2018.31.6.591 Print.
  33. Olszewski, N., Sun, T., Gubler, F. (2002). Gibberellin signaling/: biosynthesis, catabolism and response pathways. The Plant Cell. Figure 1. 61-81. https://doi.org/10.1105/tpc.010476.GAs
  34. Pokrzywinski, K., Sartain, B., Greer, M., Getsinger, K., Fields, M. (2020). Optimizing conditions for Nitellopsis obtusa (starry stonewort ) growth and bulbil germination in a controlled environment. Aquatic Botany. 160: 103163. https://doi.org/10.1016/j.aquabot.2019.103163
  35. Ranwala, A.P., Miller, Æ.W.B. (2008). Gibberellin-mediated changes in carbohydrate metabolism during flower stalk elongation in tulips. Plant Growth Regulation. 55: 241-248. https://doi.org/10.1007/s10725-008-9280-9
  36. Rayamajhi, M.B., Pratt, P.D., Tipping, P.W., Leidi, J.G., Jr, F.A.D., Madeira, P.T. (2017). Attributes of naturally fallen (Rained) melaleuca quinquenervia seeds in two habitat types of south florida wetlands. American Journal of Plant Sciences. 8: 1659-1671. https://doi.org/10.4236/ajps.2017.87115
  37. Regnault, T., Daviere, J.-M., Heintz, D., Lange, T., Achard, P. (2014). The gibberellin biosynthetic genes AtKAO1 and AtKAO2 have overlapping roles throughout Arabidopsis development. The Plant Journal. 80: 462-474. https://doi.org/10.1111/tpj.12648
  38. Ritz, C., Pipper, C., Yndgaard, F., Fredlund, K., Steinrücken, G. (2010). Modelling flowering of plants using time-to-event methods. European Journal of Agronomy. 32: 155-161. https://doi.org/10.1016/j.eja.2009.10.002
  39. Shalom, S.R., Gillett, D., Zemach, H., Kimhi, S., Forer, I., Zutahy, Y., Tam, Y., Teper-Bamnolker, P., Kamenetsky, R., Eshel, D. (2015). Storage temperature controls the timing of garlic bulb formation via shoot apical meristem termination. Planta. 242(4): 951-962. https://doi.org/10.1007/s00425-015-2334-0
  40. Shi-wei, S., Yu-ling, L.E.I., Xin-min, H., Wei, S.U., Ri-yuan, C., Yan-wei, H.A.O. (2019). Crosstalk of cold and gibberellin effects on bolting and flowering in flowering Chinese cabbage. Journal of Integrative Agriculture. 18(5): 992-1000. https://doi.org/10.1016/S2095-3119(18)62063-5.
  41. Siswadi, E., Kurniasari, L., Yuliana, L. (2020). Improvement of shallot flowering (Allium cepa var.ascalonicum) of Bauji variety in the lowland area of Jember through vernalization and GA3 concentrations. IOP Conference Series: Earth and Environmental Science. 411(1): https://doi.org/10.1088/1755-1315/411/1/012066.
  42. Statistical Yearbook Of Indonesia. (2019). Indonesian shallot production 2019. BPS-Statistics Indonesia. Online, akarta.
  43. Song, J., Angel, A., Howard, M., Dean, C. (2012). Vernalization-a cold-induced epigenetic switch. Journal of Cell Science. 125: 3723–3731. https://doi.org/10.1242/jcs.084764
  44. Terui, K., Okagami, N. (1998). Loss of short-day requirement for dormancy breaking of bulbils from gibberellic acid-treated plants in sedum bulbiferum. Plant Science. 58(1988): 129-134.
  45. Triharyanto, E, Purnomo, D., Yunus, A., Samanhudi. (2020). Detection of flowering ability on several bulbs shallot sources by using Hd3a and Endogenous GA3 Analysis. Indian Journal of Agricultural Research. 54 (6): 699-707. 
  46. Triharyanto, E, Purnomo, D. (2020). Yield potential of shallots [Allium cepa (L.) Aggregatum Group] from several sources of planting material in tropical region. Journal of Agronomy. 19: 138-144. https://doi.org/10.3923/ja.2020.XX.XX
  47. Webb, L., Scienti, C., Csiro, O. (2014). Climate Change/ : Horticulture. Encyclopedia of Agriculture and Food Systems. 2: 266-283. https://doi.org/10.1016/B978-0-444-52512-3.00240-0.
  48. Wiebe, H. (1990). Effects of temperature and daylength on bolting of leek (Allium porrum L.). Scientia Horticulturae. 59(1990): 177–185.
  49. Winterhagen, P., Hegele, M., Tiyayon, P., Wünsche, J.N. (2020). Cytokinin accumulation and flowering gene expression are orchestrated for floral meristem development in longan (Dimocarpus longan Lour.) after chemical flower induction. Scientia Horticulturae. 270(April): 109467. https://doi.org/10.1016/j.scienta.2020.109467.
  50. Wu, C., Wang, M., Dong, Y., Cheng, Z., Meng, H. (2015). Growth, bolting and yield of garlic (Allium sativum L.) in response to clove chilling treatment. Scientia Horticulturae. 194: 43-52. https://doi.org/10.1016/j.scienta.2015.07.018
  51. Wu, C., Wang, M., Dong, Y., Cheng, Z., Meng, H. (2016). Effect of plant age and vernalization on bolting, plant growth and enzyme activity of garlic (Allium sativum L .). Scientia Horticulturae. 201: 295-305. https://doi.org/10.1016/j.scienta.2016.02.006
  52. Xue, J., Li, T., Wang, S., Xue, Y., Liu, X., Zhang, X. (2019). Defoliation and gibberellin synergistically induce tree peony flowering with non-structural carbohydrates as intermedia. Journal of Plant Physiology. 233: 31-41. https://doi.org/10.1016/    j.jplph.2018.12.004
  53. Yamazaki, H., Shiraiwa, N., Itai, A. and Honda, I. (2015). Involvement of Gibberellins in the Regulation of Tillering in Welsh Onion (Allium fistulosum L.). 84(4): 334-341. https://doi.org/10.2503/hortj.MI-050.
  54. Yoshie, F. (2014). Latitudinal variation in sensitivity of flower bud formation to high temperature in Japanese Taraxacum officinale. Journal of Plant Research. 127: 339-412. https://doi.org/10.1007/s10265-014-0626-2.
  55. Yulyatin, A., Dianawati, M., Haryati, Y., Pengkajian. (2019). Assessment of onion fertilization technology package with mini umbi seeds in cirebon district. Jurnal Pengkajian Dan Pengem-bangan Teknologi Pertanian. 22(3): 355-362.
  56. Zhang, S., Zhang, D., Fan, S., Du, L., Shen, Y., Xing, L., Li, Y., Ma, J., Han, M. (2016). Effect of exogenous GA 3 and its inhibitor paclobutrazol on floral formation, endogenous hormones and fl owering-associated genes in ‘ Fuji ’ apple (Malus domestica Borkh.). Plant Physiology et Biochemistry. 107: 178-186. https://doi.org/10.1016/j.plaphy.2016.06.005
     

Global Footprints