Loading...

Changes in Physiological and Relative Genes Expression Response of Mandarin Citrus (Citrus reticulata Blanco) cv Rimau Gerga Lebong (RGL) Grafted onto Different Citrus Rootstocks

DOI: 10.18805/IJARe.A-615    | Article Id: A-615 | Page : 549-555
Citation :- Changes in Physiological and Relative Genes Expression Response of Mandarin Citrus (Citrus reticulata Blanco) cv Rimau Gerga Lebong (RGL) Grafted onto Different Citrus Rootstocks.Indian Journal of Agricultural Research.2021.(55):549-555
Farida Yulianti, Afifuddin Latif Adiredjo, Lita Soetopo, Sumeru Ashari adiraf212@gmail.com
Address : Indonesian Citrus and Subtropical Fruits Research Institute, Jl. Raya Tlekung no 1, Junrejo, Batu City-East Java, Indonesia.
Submitted Date : 11-01-2021
Accepted Date : 31-03-2021

Abstract

Background: RGL mandarin is one of the important mandarin citrus varieties in Indonesia. The tolerance of RGL mandarin citrus to water deficit can be induced by the rootstock. This study aimed to characterize the physiological responses and transcriptional gene expression of RGL mandarin citrus grafted onto three rootstock genotypes during the dry and the rainy seasons.
Methods: Three-years-old mandarin citrus trees cv. Rimau Gerga Lebong (RGL) grafted onto three citruses (JC, Cit and K) were planted at the experimental field of the ICISFRI. The experiment was conducted with a randomized block design and each scion-rootstock combination contained five replications. All of the physiological and relative gene expression parameters observed were conducted at the last of the dry season (September 2019) and the mid of the rainy season (January 2020). Water deficit was induced by no watering plants during the dry season.
Result: The results of physiological responses and relative gene expression analyses showed that RGL-Cit combination had better than RGL-JC combination and RGL-JC combination had better than RGL-K combination. RGL-Cit combination showed less wilt than RGL-JC and RGL-K combinations. The RGL-Cit combination had the highest stomatal density, stomatal aperture, stomatal conductance and photosynthetic rate in the dry season. Different plant combinations showed different gene expressions. RGL-JC and RGL-K combinations were upregulated in almost all the primers related to drought responses tested in the dry season. RGL-Cit combination only upregulated the PIP1, PIP2 and ACS2 and unregulated the others in the dry season. Therefore, citrumelo seems to be a valuable type of rootstock.

Keywords

Drought tolerance Gene expression Physiology RGL mandarin Rootstock

References

  1. Agustí, J., Merelo, P., Cercós, M., Tadeo, F.R., and Talón, M. (2008). Ethylene-induced differential gene expression during abscission of citrus leaves. Journal of Experimental Botany. 59(10): 2717-2733. https://doi.org/10.1093/jxb/ern138.
  2. Arve, L., Torre, S., Olsen, J., and Tanino, K. (2011). Stomatal Responses to Drought Stress and Air Humidity. In Abiotic Stress in Plants - Mechanisms and Adaptations (Vol. 395, pp. 116-124). InTech. https://doi.org/10.5772/24661.
  3. Berdeja, M., Nicolas, P., Kappel, C., Dai, Z.W., Hilbert, G., Peccoux, A., Lafontaine, M., Ollat, N., Gomès, E. and Delrot, S. (2015). Water limitation and rootstock genotype interact to alter grape berry metabolism through transcriptome reprogramming. Horticulture Research. 2(1): 15012. https://doi.org/10.1038/hortres.2015.12.
  4. Bové, J.M. and Ayres, A.J. (2007). Etiology of Three Recent Diseases of Citrus in São Paulo State: Sudden death, variegated chlorosis and huanglongbing. IUBMB Life. 59(4): 346-354. https://doi.org/10.1080/1521654070129 9326.
  5. BPS-Statistics Indonesia. (2020). Statistics of Annual Fruit and Vegetable Plants (Indonesia).
  6. Castle, W.S., Stover, E. and Castle, B.B. (2000). Rootstock Reflections/ : Swingle Citrumelo Update Rootstock Reflections/ : Swingle citrumelo update. Citrus Industry. 81: 18-20.
  7. Daszkowska-Golec, A. and Szarejko, I. (2013). Open or Close the Gate - Stomata Action under the Control of Phytohormones in Drought Stress Conditions. Frontiers in Plant Science. 4(MAY): 1-16. https://doi.org/10.3389/fpls.2013.00138.
  8. Distefano, G., Casas, G. Las, Caruso, M., Todaro, A., Rapisarda, P., La Malfa, S., Gentile, A., Tribulato, E., Giuseppina, L. C., Caruso, M., Todaro, A., Rapisarda, P., Malfa, S.L.A., Gentile, A. and Tribulato, E. (2009). Physiological and molecular analysis of the maturation process in fruits of clementine mandarin and one of its late-ripening mutants. Journal of Agricultural and Food Chemistry. 57(17): 7974-7982. https://doi.org/10.1021/jf900710v.
  9. Donadio, L.C., Lederman, I.E., Roberto, S.R. and Stucchi, E.S. (2019). Dwarfing-canopy and rootstock cultivars for fruit trees. Revista Brasileira de Fruticultura. 41(3): 1-12. https://doi.org/10.1590/0100-29452019997.
  10. Ghoulam, C. and Khadraji, A. (2016). Effect of drought on growth, physiological and biochemicalprocesses of chickpea-    rhizobia symbiosis. Legume Research - An International Journal. 40(OF): 94-99. https://doi.org/10.18805/lr.v0iof.3771.
  11. Gonçalves, L.P., Alves, T.F.O., Martins, C.P.S., de Sousa, A.O., dos Santos, I.C., Pirovani, C.P., Almeida, A.A.F., Filho, M.A.C., Gesteira, A.S., Soares Filho, W. dos S., Girardi, E.A. and Costa, M.G.C. (2016). Rootstock-induced physiological and biochemical mechanisms of drought tolerance in sweet orange. Acta Physiologiae Plantarum. 38(7). https://doi.org/10.1007/s11738-016-2198-3.
  12. Gong, X., Zhang, J. and Liu, J.H. (2014). A stress responsive gene of Fortunella crassifolia FcSISP functions in salt stress resistance. Plant Physiology and Biochemistry. 83: 10-19. https://doi.org/10.1016/j.plaphy.2014.07.003.
  13. Hakim, Ullah, A., Hussain, A., Shaban, M., Khan, A.H., Alariqi, M., Gul, S., Jun, Z., Lin, S., Li, J., Jin, S. and Munis, M.F.H. (2018). Osmotin: A plant defense tool against biotic and abiotic stresses. Plant Physiology and Biochemistry. 123 (December). 149-159. https://doi.org/10.1016/j.plaphy. 2017.12.012.
  14. Haworth, M., Killi, D., Materassi, A., Raschi, A. and Centritto, M. (2016). Impaired stomatal control is associated with reduced photosynthetic physiology in crop species grown at elevated [CO2]. Frontiers in Plant Science. 7: 1-13. https://doi.org/10.3389/fpls.2016.01568.
  15. Hu, J., Jiang, J. and Wang, N. (2018). Control of citrus huanglongbing via trunk injection of plant defense activators and antibiotics. Phytopathology. 108(2): 186-195. https://doi.org/10.1094/    PHYTO-05-17-0175-R.
  16. Krasensky, J. and Jonak, C. (2012). Drought, salt and temperature stress-induced metabolic rearrangements and regulatory networks. Journal of Experimental Botany. 63(4): 1593-1608. https://doi.org/10.1093/jxb/err460.
  17. Lestari, M.W., Arfarita, N., Sharma, A. and Purkait, B. (2019). Tolerance mechanisms of Indonesian plant varieties of yardlong beans (Vigna unguiculata sub sp. sesquipedalis) against drought stress. Indian Journal of Agricultural    Research. 53(2): 223-227. https://doi.org/10.18805/    IJARe.A-369.
  18. Li, W. X., Oono, Y., Zhu, J., He, X. J., Wu, J. M., Iida, K., Lu, X.Y., Cui, X., Jin, H. and Zhu, J.K. (2008). The Arabidopsis NFYA5 transcription factor is regulated transcriptionally and posttranscriptionally to promote drought resistance. Plant Cell. 20(8): 2238-2251. https://doi.org/10.1105/tpc. 108.059444.
  19. Mahantesh, S., Ramesh Babu, H.N., Ghanti, K. and Raddy, P.C. (2018). Identification of drought tolerant genotypes based on physiological, biomass and yield response in groundnut (Arachis hypogaea L.). Indian Journal of Agricultural Research. 52(3): 221-227. https://doi.org/10.18805/IJARe.A-4984.
  20. Opazo, I., Toro, G., Salvatierra, A., Pastenes, C. and Pimentel, P. (2020). Rootstocks modulate the physiology and growth responses to water deficit and long-term recovery in grafted stone fruit trees. Agricultural Water Management. 228: 105897. https://doi.org/10.1016/j.agwat.2019.105897.
  21. Pajon, M., Febres, V.J. and Moore, G.A. (2017). Expression patterns of flowering genes in leaves of ‘Pineapple’ sweet orange [Citrus sinensis (L.) Osbeck] and pummelo (Citrus grandis Osbeck). BMC Plant Biology. 17(1): 146. https://doi.org/    10.1186/s12870-017-1094-3.
  22. Petroni, K., Kumimoto, R.W., Gnesutta, N., Calvenzani, V., Fornari, M., Tonelli, C., Holt, B.F. and Mantovani, R. (2013). The promiscuous life of plant NUCLEAR FACTOR Y transcription factors. Plant Cell. 24(12): 4777-4792. https://doi.org/    10.1105/tpc.112.105734.
  23. Pfaffl, M.W. (2001). A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Research. 29(9): 45e-45. https://doi.org/10.1093/nar/29.9.e45.
  24. Santana-Vieira, D.D.S., Freschi, L., Da Hora Almeida, L.A., Moraes, D.H.S. De, Neves, D. M., Dos Santos, L.M., Bertolde, F.Z., Soares Filho, W.D.S., Coelho Filho, M.A. and Gesteira, A.D.S. (2016). Survival strategies of citrus rootstocks subjected to drought. Scientific Reports. 6: 1-12. https://doi.org/10.1038/srep38775.
  25. Santos, I.C. dos, Almeida, A.A.F. de, Pirovani, C.P., Costa, M.G.C., da Conceição, A.S., Soares Filho, W. dos S., Coelho Filho, M.A. and Gesteira, A.S. (2019). Physiological, biochemical and molecular responses to drought conditions in field-grown grafted and ungrafted citrus plants. Environmental and Experimental Botany. 162: 406-420.https://doi.org/10.1016/j.envexpbot.2019.03.018
  26. Sharma, R.M., Dubey, A.K. and Awasthi, O.P. (2015). Physiology of grapefruit (Citrus paradisi Macf.) cultivars as affected by rootstock. The Journal of Horticultural Science and Biotechnology. 90(3): 325-331. https://doi.org/10.1080/14620316.2015.11513190.
  27. Tan, F., Tu, H., Liang, W., Long, J., Wu, X., Zhang, H. and Guo, W. (2015). Comparative metabolic and transcriptional analysis of a doubled diploid and its diploid citrus rootstock (C. junos cv. Ziyang xiangcheng) suggests its potential value for stress resistance improvement. BMC Plant Biology. 15(1): 89. https://doi.org/10.1186/s12870-015-0450-4.
  28. Wei, X., Chen, C., Yu, Q., Gady, A., Yu, Y., Liang, G. and Gmitter, F.G. (2014). Novel expression patterns of carotenoid pathway-related genes in citrus leaves and maturing fruits. Tree Genetics and Genomes. 10(3): 439-448. https://doi.org/10.1007/s11295-013-0688-7.
  29. Yamaguchi-Shinozaki, K. and Shinozaki, K. (2006). Transcriptional Regulatory Networks in Cellular Responses and Tolerance To Dehydration and Cold Stresses. Annual Review of Plant Biology. 57(1): 781-803. https://doi.org/10.1146/annurev.arplant.57.032905.105444.
  30. Yaneff, A., Vitali, V., and Amodeo, G. (2015). PIP1 aquaporins: Intrinsic water channels or PIP2 aquaporin modulators? FEBS Letters, 589(23): 3508-3515. https://doi.org/10. 1016/j.febslet.2015.10.018.
  31. Zadražnik, T., and Šuštar-Vozliè, J. (2020). Impact of drought stress on physiological characteristics and isolation of chloroplasts in common bean (Phaseolus vulgaris L.). Legume Research. 43(1): 50-55. https://doi.org/10.18805/LR-455.
  32. Zhao, W., Sun, Y., Kjelgren, R. and Liu, X. (2015). Response of stomatal density and bound gas exchange in leaves of maize to soil water deficit. Acta Physiologiae Plantarum. 37(1). https://doi.org/10.1007/s11738-014-1704-8. 

Global Footprints