Indian Journal of Agricultural Research

  • Chief EditorT. Mohapatra

  • Print ISSN 0367-8245

  • Online ISSN 0976-058X

  • NAAS Rating 5.60

  • SJR 0.293

Frequency :
Bi-monthly (February, April, June, August, October and December)
Indexing Services :
BIOSIS Preview, ISI Citation Index, Biological Abstracts, Elsevier (Scopus and Embase), AGRICOLA, Google Scholar, CrossRef, CAB Abstracting Journals, Chemical Abstracts, Indian Science Abstracts, EBSCO Indexing Services, Index Copernicus
Indian Journal of Agricultural Research, volume 55 issue 3 (june 2021) : 374-378

The Genotype and Crop Age Effect on Nutritive Value of Corn Forage

N.P. Indriani, Y. Yuwariah, D. Ruswandi
1Department of Livestock Nutrition and Feed Technology, Faculty of Animal Husbandry, University of Padjadjaran, Jatinangor, Sumedang, Indonesia. 
Cite article:- Indriani N.P., Yuwariah Y., Ruswandi D. (2021). The Genotype and Crop Age Effect on Nutritive Value of Corn Forage. Indian Journal of Agricultural Research. 55(3): 374-378. doi: 10.18805/IJARe.A-604.
Background: The Corn crop (Zea mays) was one type of feed crop which is a good source of crude fiber for ruminant. Corn crops had several types of genotypes and each genotype had its advantages in terms of productivity and nutritional content. 
Methods: The study was conducted from January to May 2018, at the Agricultural Research and Development Research Studio located at Arjasari Village, Arjasari District, Bandung Regency, West Java, in Indonesia. The purpose of this study was to determine the effect of various genotypes and crop ages on crude protein, crude fiber, crude fat, energy and Nitrogen free extract of Corn forage. This research was designed with an experimental method using a Completely Randomized Design. The treatments in this study were the genotype of Corn crop and the crop age.
Result: The results of the statistical analysis showed that the interaction of genotype and age gave different results on Nitrogen free extract and crude fiber at 5% significant level test. Genotype and age interaction did not give different results on Energy, Crude Fat and Crude Protein at 5% significant level test.
  1. Amasaib, E.O., Ibrahim, R.A.B.H and Abdalla, A.W.H. (2016). Nutriens and anti-nutrients analysis of Guar (Cyamopsis tetragonoloba) forage genotypes. International Journal of Science, Environment. 5(5): 2865-2876.
  2. Amodu J.T., Akpensuen, T.T., Dung, D.D., Tanko, R.J., Musa, A., Abubakar, S.A., Hasan, M.R., Jegede, J.D. and Sani, I. (2014). Evaluation of maize accession for nutriens composition, forage and silage yield. Journal of Agricultural Science. 6(4): 178-187.
  3. Banotra, M., Sharma, B.C., Nandan, B., Verma, A., Shah, I.A., Kumar, R., Gupta, V. and Nangial, T. (2017). Growth, phenology, yield and nutrient uptake of sweet corn as influenced by cultivar and planting times under irrigated subtropics of shiwalk foot hills. Int. J. Curr. Microbiol. App. Sci. 6(10): 2971-2985.
  4. Basit, A., Khaliq, A., Pervez, A., Hayet, S. and Akhtar, M.S. (2018). Assessment of maize genotypes for forage yield and quality. J. Plant Breed Genet. 6(1): 9-14.
  5. Burton G.W., Hart, R.H. and Lowrey, R.S. (1967). Improving forage quality in bermudagrass by breeding. Crop Science Society of America. 7(4): 324-332.
  6. Cahya, Jamil Eko dan Ninuk Herlina. (2018). The Potency Test Six Varieties of Sweet Corn (Zea mays saccharata Sturt) on Lowland Pamekasan Regency. Journal of Plant Production. 6(1) : 92-100. (in Indonesian).
  7. Chowdhury, M.M., Haque, M.A., Malek, M.A., Rasel, M., Molla, M.R. and Ahamed, K. (2020). Morphological and SSR marker based diversity analysis of lentil (Lens esculenta) genotypes using yield and yield contributing characters. Indian Journal of Agricultural Research. 54(4): 429-436. DOI: 10.18805/IJARe.A-464.
  8. Giridhar, K., Kumari, S.S., Rajani, A., Sarada, C. and Naidu, N. (2016). Identification of potential genotypes of fenugreek in rainfed vertisols for yield and diosgenin content. Indian Journal of Agricultural Research. 50(4): 311-317. Doi: 10.18805/ijare.v0iOF.8603
  9. Hajar, L. Abdullah dan D. Diapari. (2019). Production and nutrient content of sorgum hybrid varieties with different planting distances as feed source. Journal of Nutrition Science and Feed Technology. 17(1): 1-5. (in Indonesian).
  10. Hakl, L., Laucka, R., Jirmanova, J. and Jambar, V. (2017). Influence of genotype. Site and year on maizenutritive value-yield relationship. Scientia Agriculturae Bohemica. 48(2): 47-53.
  11. Hartadi H., Resohadiprodjo, S., Tillman, A.D. (2005). Feed Compostion Table for Indonesian. Gadjah Mada Press. Fifth Issue. Yogyakarta. (in Indonesian).
  12. Haryani, H., Norlindawati, A.P., Norfadzrin, F., Aswanimiyuni, A. and Azman, A. (2018). Yield and nutritive values of six Napier (Pennisetum purpureum) cultivars at different cutting age. Malaysian Journal of Veterinary Research. 9(2): 6-12.
  13. Ilmawan, E. (2017). Dry stress tolerance level of Corn crop genotypes (Zea mays L.). Jurnal Agrominansia. 2(2): 119-128. (in Indonesian).
  14. Indiani, N.P., Yuwariah, Y., Nuraini, A. and Ruswandi, D. (2018). Nutrient content of various Padjadjaran hybrid maize as feed forage at arjasari village Bandung. Asian Journal of Crop Science. 10(3): 121-125. Doi: 10.3923/ajcs.2018.121.126.
  15. Indriani, N.P., Mustafa, H.K. Ayuningsih, B. and Rochana, M.A. (2019). Production and nitrogen, phosphorus and calcium absorption of sword bean leaf (Canavalia gladiata) in application of rock phosphate and VAM inoculation. Legume Research. 42(2): 238-242. Doi: 10.18805/LR-422.
  16. Islam, S.S., Anothai, J., Nualsri, C. and Soonsuwon, W. (2020). Genetic variability and cluster analysys for phenological traits of Thai indigenous upland rice (Oriza sativa L.). Indian Journal of Agricultural Research. 54(2): 211-216. DOI:10.18805/IJARe.A-461.
  17. Kabir S.H., Das, A.K., Rahman, Md, S., Singh, S.K., Morshed, M. and Marma, A.S.H. (2019). Effect of genotype on proximate composition and biological yield of maize (Zea mays L.). Archieves of Agriculture and Environmental Science. 42(2): 185-189.
  18. Lemaire, G. and Belanger, G. (2020). Allometries in plant as driver of forage nutritive value: A review. Agriculture.10(5): 6-18.
  19. Miller, R.E., Gleadow, R.M. and Cavagnaro, T.R. (2014). Age versus stage 2 does ontogeny modify the effect of phosphorus and arbuscular mycorrhizas on above -and below-ground defence in forages sorghum. Plant Cell an Environment. 37: 929-942.
  20. Mut, Z., Akay, H. and Erbas, O.D. (2015). Hay yield and quality of oat (Avena sativa L.) genotypes of world wide origin. International Journal of Plant Production. 9(4): 507-522.
  21. Rochana, A., Indriani, N.P., Ayuningsih, B., Hernaman, I., Dhalika, T., Rahmat, D. and Suryanah, S. (2016). Feed forage and nutrition value at altitudes during the dry season in West Java. Animal Production.18(2): 85-93.
  22. Ruswandi, D., dan M. Syafi’i. (2016). Preliminary selection of Unpad Corn for shading tolerant in Agroforestry system using albizzia. Jurnal Agrotek Indonesia. 1(1): 47-56. (in Indonesian).
  23. Salama, H.S.A. (2019). Yield and nutritive value of maize (Zea mays L.) forage as affected by plant density, sowing date and age at harvest. Italian Journal of Agronomy. 14(1383): 114-122.
  24. Singh, S., Verma, V., Singh, B., Sharma, V.R. and Mukesh (2019). Genetic variability, heritability and genetic advance studies in pea (Pisum sativum L.) for quantitative characters. Indian Journal of Agricultural Research. 53(5): 542-547. DOI:10.18805/IJARe.A-5245. 
  25. Sravika, A., Kennedy, J.S., Rajabaskar, D. and Rajeswari, E. (2019). Field screening of greengram (Vigna radiata L.) genotypes for resistance against Urdbean Leaf Crinkle Virus. Indian Journal of Agricultural Research. 53(4): 458-462. DOI: 10.18805/IJARe.A-5184.
  26. Susilawati, I., Indriani, N.P., Khairani, L. and Tanuwiria, U.H. (2019). Increase nutritional content and in vitro digestibility of forage legumes by adding molybdenum with foliar spray methods. Legume Research. 42(4): 35-41. DOI: 10.18805/LR-406.
  27. Thapa, R.S., Sharma, P.K., Kumar, A., Singh, T. and Pratap, D. (2019). Assessment of genetic variability, heritability and genetics advance in wheat (Triticum aestivum L.) genotypes under normal and heat stress condition. Indian Journal of Agricultural Research. 53(1): 51-56. DOI: 10.18805/IJARe.A-5095.
  28. Tufail, M.S., Krebs, G.L., Southwell, A., Piltz, J.W., Norton, M.R. and Wynn, P.C. (2020). Enhancing performance of berseem clover genotypes with better harvesting management through farmers participatory research at smallholder farms in Punjab. Scientific Reports.10(3545): 1-12.
  29. Turano, B., Tiwari, U.P. and Jha, R. (2016). Growth and nutritional evaluation of Napier for ruminants. Tropical Grasslands- Forrajes Tropicales. 4(3): 168-178.
  30. Ullmann, I., Herrmann, A., Hasler, M. and Taube, F. (2017). Influence of the critical phase of stem elongation on yield and forage quality of perennial ryegrass genotypes in the first reproductive growth. Field Crop Research. 205: 23-33.
  31. Vaswani, S., Kumar, R., Kumar, V., Ray, D. and Kumar, M. (2016). Nutritional and mineral composition of diferens varieties of normal and high quality protein maize fodder at post-Cobstage 1. International Journal of Science, Environment and Technology. 5(5): 2719-2727.
  32. Verma, A.K., Jyothi, K.U. and Doraje Rao, A.V.D. (2015). Variability and character association studies in dolichos bean (Lablab purpureus L.) genotypes. Indian Journal of Agricultural Research. 49(1): 46-52. DOI: 10.5958/0976-058X.2015.00006.2.
  33. Yuwariah, Y., Indriani, N.P., Ariyanti, M., Azizah, E. and Ruswandi, D. (2020). Genotype x Environment interaction of maize hybrids under intercropping with sweet potato in Indonesia. J. Agron. 19(1): 31-39.

Editorial Board

View all (0)