Bioactive Compounds, Antioxidant Activity and Mineral Content of Common Bean Varieties Grown in Tabasco, Mexico

DOI: 10.18805/IJARe.A-587    | Article Id: A-587 | Page : 368-372
Citation :- Bioactive Compounds, Antioxidant Activity and Mineral Content of Common Bean Varieties Grown in Tabasco, Mexico.Indian Journal of Agricultural Research.2022.(56):368-372
F. Florvil, C. Márquez-Quiroz, E. de-la-Cruz-Lázaro, R. Osorio-Osorio, E. Sánchez-Chávez cesar_quiroz23@hotmail.com
Address : Maestría en Ciencias Agroalimentarias, División Académica de Ciencias Agropecuarias, Universidad Juárez Autónoma de Tabaco. Km. 25. Carretera Villahermosa-Teapa. CP. 86290. Centro, Tabasco, México.
Submitted Date : 17-07-2020
Accepted Date : 2-04-2022


Phaseolus vulgaris is the most important legume for its nutritional value and health benefits in Mexico. In this research mineral content, bioactive compounds and antioxidant activity of 18 bean collections were analyzed. Different grain beans were collected in rural communities in 12 municipalities of the state of Tabasco, Mexico and carried out from March to June 2018. They were analyzed for mineral content (N, P, K, Ca, Mg, Fe, Zn, Mn and Ni), proximal bromatological analysis (ash, crude fat, crude fiber and protein), phenolic compounds content (total phenols, flavonoids and anthocyanins) and antioxidant activity. The contents of zinc were low in all bean collections; additionally, collections C104, C109 and C113 recorded the highest concentration of total phenols (55.45 mg GA g-1), flavonoids (1.46 mg CE g-1) and anthocyanins (2.87 mg C3G g-1) and antioxidant capacity (91.05%) respectively. This study has shown that common bean varieties grown in the state of Tabasco have high biological and antioxidant potential that could be beneficial to human health when consumed as nutraceutical foods.


Food and nutritional security Phaseolus vulgaris Phenols Zinc


  1. Alcazar-Valle, M., Lugo-Cervantes, E., Mojica, L., Morales-Hernandez, N., Reyes-Ramirez, H., Enriquez-Vara, J.N., Garcia-Morales, S. (2020). Bioactive compounds, antioxidant activity and antinutritional content of legumes: A comparison between four phaseolus species. Molecules. 25(15): 3528. DOI: 10.3390/molecules25153528.
  2. AOAC. (2002). In: Association of Official Analytical Chemists. Official Methods of Analysis of the AOAC. 17th Edition. [Horwitz, W. (Ed.)].Washington, D.C. USA.
  3. Armendáriz-Fernández, K.V., Herrera-Hernández, I.M., Muñoz- Márquez, E., Sánchez, E. (2019). Characterization of bioactive compounds, mineral content and antioxidant activity in bean varieties grown with traditional methods in Oaxaca, Mexico. Antioxidants. 8(1): 26. DOI: 10.3390/ antiox8010026.
  4. Brand-Williams, W., Cuvelier, M.E., Berset, C. (1995). Use of a free radical method to evaluate antioxidant activity. LWT- Food Science and Technology. 28(1): 25-30. DOI: 10.1016/S0023-6438(95)80008-5.
  5. Briat, J.F. (2011). In: Iron Nutrition and Implications for Biomass Production and the Nutritional Quality of Plant Products. The Molecular and Physiological Basis of Nutrient use Efficiency in Crops, Wiley-Blackwell. [Hawkesford, M.J. and Barraclough, P. (Eds.)]. p. 311-334. DOI: 10.1002/ 9780470960707.ch15.
  6. Chavez-Mendoza, C., Hernandez-Figueroa. K.I.,. Sanchez, E. (2019). Antioxidant capacity and phytonutrient content in the seed coat and cotyledon of common beans (Phaseolus vulgaris L.) from various regions in Mexico. Antioxidants. 8(1): 5. DOI: 10.3390/antiox8010005.
  7. Corzo-Ríos, L.J., Sánchez-Chino, X.M., Cardador-Martínez, A., Martínez-Herrera, J., Jiménez-Martínez, C. (2020). Effect of cooking on nutritional and non-nutritional compounds in two species of Phaseolus (P. vulgaris and P. coccineus) cultivated in Mexico. International Journal of Gastronomy and Food Science. 20: 100206. DOI: 10.1016/j.ijgfs.2020. 100206.
  8. Espinoza-García, N., Martínez-Martínez, R., Chávez-Servia, J.L., Vera-Guzmán, A.M., Carrillo-Rodríguez, J.C., Heredia- García, E., Velasco-Velasco, V.A. (2016). Contenido de minerales en semilla de poblaciones nativas de frijol común (Phaseolus vulgaris). Revista Fitotecnia Mexicana. 39(3): 215-223.
  9. Fageria, N.K. and Baligar, V.C. (2005). Nutrient availability. Encyclopedia of Soils in the Environment. Hillel, D. Oxford, Elsevier. p. 63-71. DOI: 10.1016/B0-12-348530-4/00236-8. 
  10. Fernández-Valenciano, A.F. and Sánchez-Chávez, E. (2017). Estudio de las propiedades fisicoquímicas y calidad nutricional en distintas variedades de frijol consumidas en  México. Nova Scientia. 9(18): 133-148. DOI: 10.21640/ns.v9i18.763.
  11. García-Díaz, Y.D., Aquino-Bolaños, E.N., Chávez-Servia, J.L., Vera-Guzmán, A.M., Carrillo-Rodríguez, J.C. (2018). Bioactive compounds and antioxidant activity in the common bean are influenced by cropping season and genotype. Chilean Journal of Agricultural Research. 78(2): 255-265. DOI: 10.4067/S0718-58392018000200255.
  12. Herrera-Hernández, M.I., Armendáriz-Fernández, V.K., Muñoz- Márquez, E., Sida-Arreola, P.J., Sánchez, E. (2018). Characterization of bioactive compounds, mineral content and antioxidant capacity in bean varieties grown in semi-arid conditions in Zacatecas, Mexico. Foods. 7(12): 199. DOI: 10.3390/foods7120199.
  13. Jones, J.B., Wolf, J.B., Mills, H.A. (1991). Plant Analysis Handbook. A Practical Sampling, Preparation, Analysis and Interpretation Guide. Micro-Macro Publishing, Inc. Athens, Georgia. 213 pp.
  14. NOM. (1978). NOM-F-90-S-1978. Determinación de fibra cruda en alimentos., Norma Oficial Mexicana.
  15. NORMEX. (2002). NMX-F-607-NORMEX-2002. Alimentos- determinación de cenizas en alimentos-método de prueba. Sociedad Mexicana de Normalización y Certificación.
  16. NORMEX. (2006). NMX-F-427-NORMEX-2006. Alimentos-determinación de grasa (método gravímetrico por hidrolisis ácida)-método de prueba., Sociedad Mexicana de Normalización y Certificación.
  17. Pliego-Marín, L., López-Baltazar, J., Aragón-Robles, E. (2013). Características físiscas, nutricionales y capacidad germinativa de frijol criollo bajo estrés hídrico. Revista Mexicana de Ciencias Agrícolas. Pub. Esp.6: 1107-1209. DOI: 10.29312/remexca.v0i6.1283.
  18. Reussi-Calvo, N.I., Echeverría, H.E., Sainz-Rozas, H. (2008). Comparación de métodos de determinación de nitrógeno y azufre en planta: Implicancia en el diagnóstico de azufre en trigo. Ciencia del Suelo. 26(2): 161-167.
  19. Sánchez-Chino, X., Jiménez-Martínez, C., Dávila-Ortiz, G., Álvarez- González, I., Madrigal-Bujaidar, E. (2015). Nutrient and nonnutrient components of legumes and its chemopreventive activity: A review. Nutrition and Cancer. 67(3): 401-410. DOI: 10.1080/01635581.2015.1004729.
  20. Sánchez, E., Ruiz, J.M., Romero, L., Preciado-Rangel, P., Flores-Córdova, M.A., Márquez-Quiroz, C. (2018). ¿Son los pigmentos fotosintéticos buenos indicadores de la relación del nitrógeno, fósforo y potasio en frijol ejotero? Ecosistemas y Recursos Agropecuarios. 5(15): 387-398. DOI: 10.19136/era.a5n15.1757.
  21. Singleton, V.L. and Rossi, J.A. (1965). Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. American Journal of Enology and Viticulture. 16(3): 144- 158.
  22. Wrolstad, R.E. (1993). Color and Pigment Analyses in Fruit Products. Station Bulletin 624. Agricultural Experiment Station Oregon State University. USA. 20 pp.
  23. Yang, Q.Q., Gan, R.Y., Ge, Y.Y., Zhang, D., Corke, H. (2018). Polyphenols in common beans (Phaseolus vulgaris L.): chemistry, analysis and factors affecting composition. Comprehensive Reviews in Food Science and Food Safety. 17(6): 1518-1539. DOI: 10.1111/1541-4337. 12391.
  24. Zhishen, J., Mengcheng, T., Jianming, W. (1999). The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food Chemistry. 64(4): 555-559. DOI: 10.1016/S0308-8146(98)00102-2.

Global Footprints