Detection of Flowering Ability on Several Bulbs Shallot Sources by using Hd3a and Endogenous GA3 Analysis

DOI: 10.18805/IJARe.A-561    | Article Id: A-561 | Page : 751-756
Citation :- Detection of Flowering Ability on Several Bulbs Shallot Sources by using Hd3a and Endogenous GA3 Analysis.Indian Journal Of Agricultural Research.2020.(54):751-756
E. Triharyanto, D. Purnomo, A. Yunus, Samanhudi eddytriharyanto@staff.uns.ac.id
Address : Departement Agrotechnology, Faculty of Agriculture, Universitas Sebelas Maret, Surakarta, Indonesia.
Submitted Date : 13-04-2020
Accepted Date : 28-05-2020

Abstract

Background: Problems shallot cultivation in tropical regions such as Indonesia, is low productivity. Planting material is one of the causes of low productivity. The planting material used is a bulb that has been used continuously. It is makes planting material susceptible to infectious diseases and viruses. Efforts can be made to reducing the attack of virus infections in the planting material of the bulbs is by using seeds. However, seed production in Indonesia is still low due to the difficulty of flowering and low viability of seeds. The aim of this research was to detect  flowering ability from the source of bulbs flowering and non-flowering clumps using Hd3a primers and endogenous GA3, also the effect of age of bulbs to flowering of shallot.
Methods: The study used a complete randomized block design. The treatment consisted of two factors with three replications. The first factor was source of bulbs flowering and non-flowering clumps. The second factor was age bulbs which consists of three levels, namely the 60, 80 and 90 days age bulbs. The contents of gibberellins was analyzed using HPLC analysis. Molecular analysis to determine the potential of flowering genes used SSR primer (Hd3a).
Result: Hd3a primer can be used as a marker of flowering shallot. Source of bulbs flowering and non-flowering clumps have the same flowering potential gene. The percentage of flowering in flowering clumps was higher than non-flowering clumps and correlates with endogenous gibberellins content. The age of bulbs indicates that older bulbs gave a higher percentage of flowering. 

Keywords

Age of planting material Bulbs production Percentage of flowering

References

  1. Amasino, R.M., Michaels, S.D. (2010). The timing of flowering. J. Plant Physiology. 154: 516-520.
  2. Amiri, A., Kafi, M., Jari, S.K., Matinizadeh, M. (2017). Morphology and responses of Tulipa gesneriana L. to light quality in combination with GA and cold storage time. Indian J. Agric. Res. 51 : 568-573 
  3. Atif, M.J., Amin, B., Ghani, M.I., Ali, M., Cheng, Z. (2020). Variation in morphological and quality parameters in garlic (Allium sativum L.) bulb influenced by different photoperiod, temperature, sowing and harvesting time. Plants. 9: 1-15
  4. Azmi, C., Hidayat, I.M., Wiguna, G. (2011). Effect of variety and size of bulbs on shallot productivity. J. Hort. 21: 206-213.
  5. Barendse, G.W.M., Van de Werken, P.H., Takahashi, N. (1980). High-performance liquid chromatography of gibberellins. Journal of Chromatography A. 198: 449–455. doi: 10. 1016/s0021-9673(00)80514-2.
  6. Berghoef, J., Zevenbergen, A. P. (1992). Effects of environmental conditions on ¯ower initiation and development of Allium sphaerocephalon L. Acta Horticulturae. 325: 1-6.
  7. Bernier, G., Kinet, J.M., Sachs, R.M. (1981). The Physiology of Flowering. II. Transition to Reproductive Growth. CRC Press Inc., Boca Raton, FL, USA. 77–90. 
  8. Bernier, G., Perilleux C. (2005). A physiological overview of the genetics of flowering time control. J. Plant Biotechnology. 3: 3-16.
  9. Blazquez, M.A., Green, R., Nilsson, O., Sussman, M.R., Weigel, D. (1998). Gibberellins promote flowering of arabidopsis by activating the leafy promoter. J. Plant Cell. 10: 791-    800.
  10. Brewster, J.L. (2008). Onions and other vegetable. Inter J Agri Biosci. 6: 265-271.
  11. Chandel, R.S., Thakur, R.K., Bhardwaj, N.R. and Pathania, N. (2004). Onion seed crop pollination: a missing dimension in mountain horticulture. Acta Hortic. 631: 79-86
  12. Cottignies, A., Cohat, J., Le Nard, M., Hourmant, A. (1997). Cycle cultural et floraison de l’échalote, Allium cepa L. var aggregatum (cvs. ‘Mikor’ et ‘Jermor’). Acta Botanica Gallica. 144: 9-16.
  13. Davies, P.J. (2004). Plant hormones: Biosynthesis, signal transduction, action. 3ed. Kluwer Academic Publishers, Dordrecht. 
  14. De Hertogh, A.A., Zimmer, K. (1993). Allium: ornamental species. In: The physiology of ower bulbs. Elsevier, Amsterdam, The Netherlands. 
  15. Devi, S., Gulati, R., Tehri, K., Poonia, A. (2015). The pollination biology of onion (Allium cepa L.)- A Review. Agri. Review. 36: 1-13. 
  16. Fletcher, P.H., Fletcher, J.D., Lewthwaite, S.L. (1998). In vitro elimination of onion yellow dwarf and shallot latent viruses in shallots (Allium cepa var. ascalonicum L.). New Zealand Journal of Crop and Horticultural Science. 26: 23-26.
  17. Ito, A., Hayama, H., Kashimura, Y. (2002). Sugar metabolism in buds during flower bud formation: a comparison of two Japanese pear [Pyrus pyrifolia (Burm.) Nak.] cultivars possessing different flowering habits. Scientia Horticulturae. 96: 163-175. DOI:10.1016/s0304-4238(02)00122-x 
  18. Kamenetsky, R. (1994). Life cycle, ower initiation and propagation of the desert geophtye Allium rothii. International Journal of Plant Science. 155: 597-605.
  19. Khan, N.H., Khan, S.M., Khan, N.U., Khan, A., Farid, A., Khan, S.A., Ali, N., Saeed, M., Hussain, 1., Ali, S. (2019). Flowering initiation in onion bulb crop as influenced by transplanting dates and nitrogen fertilizer. J. Anim. Plant Sci. 29(3): 772-782.
  20. Khokhar, K.M., Hadley, P., Pearson, S. (2007). Effect of cold temperature durations of onion sets in store on the incidence of bolting, bulbing and seed yield. Sci. Hortic. 112: 16-22.
  21. Krontal, Y., Kamenetsky, R., Rabinowitch, H.D. (2000). Flowering physiology and some vegetative traits of short-day shallot: A comparison with bulb onion. The Journal of Horticultural Science and Biotechnology. 75: 35-41. http://dx.doi.org/10.1080/14620316.2000.11511197
  22. Lee, R., Baldwin, S., Kenel, F., McCallum, J., Macknight, R. (2013). Flowering locus T genes control onion bulb formation and flowering. Nat. Commun. 4: 2884.
  23. Lewis, J.D., Wang, X., Kevin, L., Griffin., David, T. (2003). Age at flowering differentially affects vegetative and reproductive responses of a determinate annual plant to elevated carbon dioxide. Oecologia. 135: 194-201. DOI 10.1007/s00442-    003-1186-7.
  24. Mathew, D., Forer, Y., Rabinowitch, H.D., Kamenetsky, R. (2011). Effect of long photoperiod on the reproductive and bulbing processes in garlic (Allium sativum L.) genotypes. Environmental and Experimental Botany. 71: 166-173. doi: 10. 1016/j.envexpbot.2010.11.008 
  25. Messiaen, C.M., Cohat, J., Leroux, J.P., Pichon, M., Beyies, A. (1993). Les Allium alimentary reproduce par via vegetative. INRA, Paris, France.
  26. Oktaviani, Z., Hayati, M., Kesumawati, E. (2020). The response of shallot (Allium ascalonicum L.) growth and yield to gibberelline concentration and the interval of NASA liquid organic fertilizer. IOP Conf. Series: Earth and Environmental Science. 425: 012071. doi:10.1088/1755-1315/425/1/01207.
  27. Osugi, A., Itohm, H, Ikeda-Kawakatsu, K., Takano, M., Izawa, T. (2011). Molecular Dissection of the Roles of Phytochome in Photoperiodic Flowering in Rice. J. Plant Physiology. 157: 1128-1137.
  28. Rabinowitch, H., Kamenetsky, R., (2002). Shallots (A. cepa Aggregatum group). In: Allium Crop Science: Recent Advances.: [Rabinowitch, H.D., Currah, L. (Eds.)], CAB International, Wallington, UK, pp. 409–430.
  29. Rabinowitch, H.D. (1985). Onions and other edible Alliums. In: CRC Handbook of Flowering. (Halevy, A.H., Ed.). CRC Press Inc., Boca Raton, Florida, USA.
  30. Rabinowitch, H.D. (1990). Physiology of owering. In: Onions and allied crops. I. Botany, physiology and genetics. (Rabino- witch, H.D. and Brewster, J.L., Eds.). CRC Press, Boca Raton, Florida, USA.
  31. Rashid, M.A., Singh, D.P. (2000). A Manual on Vegetable Seed Production in Bangladesh. Horticulture Research Center, Bangladesh.
  32. Raveendra, Y.C., Shirol, A.M., Kulkarni, B.S. (2014). Influence of gibberellic acid on growth, yield and quality of daisy (Aster amellus L.) genotypes. Indian J. Agric. Res. 48: 319-323.
  33. Saharuddin., Dungga, N,E., Syam’un, E., Amin, A,R. (2018). Towards sustainable agricultural production: Growth and production of three varieties of shallot with some various Nitrobacter bio-fertilizer concentrations. IOP Conf. Series: Earth and Environmental Science. 157: 012015. doi :10.1088/1755-1315/157/1/012015
  34. Sathishkumar, A., Sakthivel, N., Subramanian, E., Rajesh, P. (2020). Foliar spray of salicylic and gibberllic acid on productivity of crops: A Review. Agricultural Reviews. 41: 85-88. 
  35. Shiraiwa, N., Kikuchi, K., Honda, I., Shigyo, M., Yamazaki, H., Tanaka, D., Tanabe, K., Ita, A. (2011). Characterization of Endogenous Gibberellins and Molecular Cloning of a Putative Gibberellin 3-Oxidase Gene in Bunching Onion. J. Amer. Soc. Hort. Sci. 136: 382–388. 
  36. Sponsel, V. (2005). Effect of GAs on Flowering. Plant Physiology Online, Chapter 20 Topic 8. http://5e.plantphys.net. Accessed October 18, 2019.
  37. Statistical Yearbook Of Indonesia. (2018). 1st Ed. Edited By Sub Directorate of Statistics Publication and Compilation. BPS-Statistics Indonesia. Online, Jakarta. Https://Www. Bps.Go.Id/Publication/2018/07/03/5a963c1ea9b0fed64 97d0845/Statistik-Indonesia-2018.Html. 
  38. Sulistijowati, R.S., Mile, L. (2016). Identification of lactic acid bacteria isolates from intestine ofmilkfish (chanos-chanos) potential activity against pathogen bacteria used PCR 18s RRNA methode Internasional Journal of Bio-Science and Bio-Technology. 8: 127-134. http://dx.doi.org/10.14257/ijbsbt. 2016.8.3.13
  39. Sumarni, N., Suwandi., Gunaeni, N., Putrasamedja, S. (2013). Effect of varieties and GA3 application methods on flowering and true seed yield of shallots in South Sulawesi. J Hort. 23: 153-163.
  40. Tabor, G., Stuetzel, H., Zelleke, A. (2006). Influence of planting material and duration of vernalzation on bolting of shallot (Allium cepa L. var. ascalonicum Backer). J. Hortic. Sci. Biotechnol. 81: 797–802.
  41. Takahashi, Y., Teshima, K.M., Yokoi, S., Innan, H., Shimamoto, K. (2009). Variations in Hd1 proteins, Hd3a promoters and Ehd1 expression levels contribute to diversity of flowering time in cultivated rice. PNAS Early Edition. 1-6.
  42. Taoka, K., Ohki, I., Tsuji, H., Furuita, K., Hayashi, K., Yanase, T., Yamaguchi, M., Nakashima, C., Purwestri, Y.A., Tamaki, S., Ogaki, Y., Shimada, C., Nakagawa, A., Kojima, C., Shimamoto, K. (2011). 14-3-3 proteins act as intracellular receptors for rice Hd3a florigen. J. Nature. 476: 332-338.
  43. Triharyanto, E., Nyoto, S., Yusrifani, I. (2018). Aplication of gibberellins on flowering and yield of two varieties of shallot in lowland. IOP Conference Series: Earth and Environmental Science. 142: 012 066.
  44. Triharyanto, E., Purnomo, D. (2014). Study of viability and seed structure of shallot. J. Agric. Sci.Tec. 4: 121-5. 
  45. Triharyanto, E., Samanhudi., Pujiasmanto, B., Purnomo, D. (2013). Study of seedling and cultivation of shallots (Allium ascalonicum L.) through botanical seed (True Shallot Seed). Paper Presented at the National Seminar of the Faculty of Agriculture, UNS Surakarta. 
  46. Wilson, R.N., Heckman, J.W., Somerville, C.R. (1992). Gibberellin is required for flowering in Arabidopsis thaliana under short days. J Plant Physiology. 100: 403-408.
  47. Yu, H., Ito, T., Zhao, Y., Peng, J., Kumar, P., Meyerowitz, E.M. (2004). Floral homeotic genes are targets of gibberellin signaling in flower development. PNAS. 101: 7827-7832.

Global Footprints