Evaluation of Physiological and Biochemical Parameters of Some Wheat (Triticum aestivum) Genotypes under Salinity Stress

DOI: 10.18805/IJARe.A-5473    | Article Id: A-5473 | Page : 137-143
Citation :- Evaluation of Physiological and Biochemical Parameters of Some Wheat (Triticum aestivum) Genotypes under Salinity Stress.Indian Journal Of Agricultural Research.2021.(55):137-143
Renu Yadav, Anita Rani Santal, N.P. Singh npsinghcbt@gmail.com
Address : Centre for Biotechnology, Maharshi Dayanand University, Rohtak-124001, Haryana, India.
Submitted Date : 2-12-2019
Accepted Date : 2-05-2020


Physiological and biochemical parameters of plants among five wheat genotypes: KH-65, KRL-210, KRL-99, PBW-343 and PBW-373 were studied. Wheat plantlets, at three-leaf stage, were supplemented with 0, 50, 100, 150, 200, 250 and 300 mM of NaCl for 48 hours. Principal component analysis revealed chlorophyll and carotenoid degradation as best salinity indicator for studied wheat genotypes. Salt tolerance levels of studied wheat genotypes were in the order: KH-65 > KRL-210 > KRL-99 > PBW-343 > PBW-373. The study has revealed that observed physiological and biochemical data may provide an insight into the existence of internal mechanism in salt tolerant genotypes to cope up with salinity stress.  


Biochemical Genotypes Physiological Salinity Tolerance Triticum aestivum


  1. Abdelaziz, M.N., Xuan, T.D., Mekawy, A.M.M., Wang, H., Khanh, T.D. (2018). Relationship of Salinity Tolerance to Na+ Exclusion, Proline accumulation and antioxidant enzyme activity in rice seedlings. Agriculture. 8: 166. 
  2. Ali, Q., Daud, M.K., Haider, M.Z., Ali, S., Rizwan, M., Aslam, N., Noman, A., Iqbal, N., Shahzad, F., Deeba, F. (2017). Seed priming by sodium nitroprusside improves salt tolerance in wheat (Triticum aestivum L.) by enhancing physiological and biochemical parameters. Plant Physiology and Biochemistry. 119: 50-58.
  3. Annunziata, M.G., Ciarmiello, L.F., Woodrow, P., Maximova, E., Fuggi, A., Carillo, P. (2017). Durum Wheat Roots Adapt to salinity remodeling the cellular content of nitrogen metabolites and sucrose. Frontiers in Plant Science. 7: 1-16.
  4. Ashraf, M.A., Ashraf, M., Ali, Q. (2010). Response of two genetically diverse wheat cultivars to salt stress at different growth stages: leaf lipid peroxidation and phenolic contents. Pakistan Journal of Botany. 42: 559-565.
  5. Ashraf, M.F.M.R. and Foolad, M. (2007). Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environmental and Experimental Botany. 59: 206-216. 
  6. Bafeel, S.O. (2014). Physiological parameters of salt tolerance during germination and seedling growth of Sorghum bicolor cultivars of the same subtropical origin. Saudi Journal of Biological Sciences. 21: 300-304.
  7. Bates, L.S., Waldren, R.P. and Teare, I.D. (1973). Rapid determina- -tion of free proline for water-stress studies. Plant Soil. 39: 205–207. 
  8. Bilkis, A., Islam, M.R., Hafiz, M.H.R., Hasan, M.A. (2016). Effect of NaCl induced salinity on some physiological and agronomic traits of wheat. Pakistan Journal of Botany. 48: 455-460. 
  9. Brankova, L., Ivanov, S., Alexieva, V., Karanov, E. (2005). Salt-    induced alteration in the levels of some oxidative parameters and unspecific defence compounds in leaves of two plant species (cotton and bean) with different sensitivity to salinity. Dokladi na B lgarskata akademiâ na naukite. 58: 1307-1312. 
  10. Byrt, C.S., Munns, R., Burton, R.A., Gilliham, M., Wege, S. (2018). Root cell wall solutions for crop plants in saline soils. Plant Science. 269: 47-55. 
  11. Caverzan, A., Casassola, A., Brammer, S.P. (2016). Antioxidant responses of wheat plants under stress. Genetics and Molecular Biology. 39: 1-6.
  12. Costache, M.A., Campeanu, G., Neata, G. (2012). Studies concerning the extraction of chlorophyll and total carotenoids from Vegetables. Romanian Biotechnological Letters. 17: 7702-7708. 
  13. Datta, J.K., Nag, S., Banerjee, A., Mondal, N.K. (2009). Impact of salt stress on five varieties of Wheat (Triticum aestivum L.) cultivars under laboratory condition. Journal of Applied Sciences and Environmental Management. 13(3): 93- 97.
  14. F.A.O. (2013). Wheat in the world. Food corporate document repository. Agriculture and consumer protection.
  15. Hayat, S., Hayat, Q., Alyemeni, M.N., Wani, A.S., Pichtel, J., Ahmad, A. (2012). Role of proline under changing environments: A review. Plant Signaling and Behavior. 1: 1456–1466.
  16. Heath, R.L., and Packer, L. (1968). Photoperoxidation in isolated chloroplasts: II. Role of electron transfer. Archives of Biochemistry and Biophysics. 125(3): 850-857.
  17. Hussain, T., Iqbal, A., Amir, I., Swati, Z.A. (2006). Chlorophyll-based screening for salinity tolerance in wheat genotypes. ARPN Journal of Agricultural and Biological Science. 8(8): 596-    598. 
  18. Ibrahim, W., Ahmed, I.M., Chen, X., Wu, F. (2017). Genotype-dependent alleviation effects of exogenous GSH on salinity stress in cotton is related to improvement in chlorophyll content, photosynthetic performance and leaf/root ultrastructure. Environmental Science and Pollution Research. 24: 9417-    9427. 
  19. Jolliffe, I.T. (2002). Introduction. Springer New York. (pp. 1-9).
  20. Jones, Jr. J.B. (1982). Hydroponics: its history and use in plant nutrition studies. Journal of plant Nutrition. 5: 1003-1030.
  21. Khaliq, A., Zia ul Haq, M., Ali, F., Aslam, F., Matloob, A., Navab, A., Hussain, S. (2015). Salinity tolerance in wheat cultivars is related to enhanced activities of enzymatic antioxidants and reduced lipid peroxidation. CLEAN–Soil, Air, Water. 43: 1248-1258. 
  22. Kumar, A., Lata, C., Krishnamurthy, S.L., Kumar, A., Prasad, K.R.K., Kulshreshtha, N. (2017). Physiological and biochemical characterization of rice varieties under salt and drought stresses. Journal of Soil Salinity and Water Quality. 9: 167-177. 
  23. Long, S.P. and Baker, N.R. (1986). Saline terrestrial environments. In: Photosynthesis in Contrasting Environments [N.R. Baker and S. P. Long, eds.] Elsevier, New York. 63–102.
  24. Niu, L. and Liao, W. (2016) Hydrogen peroxide signaling in plant development and abiotic responses: crosstalk with nitric oxide and calcium. Frontiers in Plant Science. 7: 230.
  25. Petrov, V.D., Van, Breusegem, F. (2012). Hydrogen peroxide-a central hub for information flow in plant cells. AoB Plants. 
  26. Ramanjulu, S. and Sudhakar, C. (2001). Alleviation of NaCl salinity stress by calcium is partly related to the increased proline accumulation in mulberry (Morusalba L.) callus. Journal of Plant Biology. 28: 203-206.
  27. Sairam, R.K., Srivastava, G.C., Agarwal, S., Meena, R.C. (2005). Differences in antioxidant activity in response to salinity stress in tolerant and susceptible wheat genotypes. Biologia Plantarum. 49: 85-91. 
  28. Szabados, L. and Savour’e, A. (2009). Proline, a multifunctional amino acid. Trends in Plant Science. 15: 89-97.
  29. Velikova, V., Yordanov, I., Edreva, A., 2000. Oxidative Stress and Some Antioxidant Systems in Acid Rain-Treated Bean Plants: Protective Role of Exogenous Poly-amines. Plant Science. 151: 59-66.
  30. Wang, M.C., Peng, Z.Y., Li, C.L., Li, F., Liu, C., Xia, G. (2008). Proteomic analysis on a high salt tolerance introgression strain of Triticumaestivum/Thinopyrumponticum. Proteomics. 8: 1470-1489.
  31. Wani, A. and Gupta, K.J. (2018). Reactive oxygen species, nitric oxide production and antioxidant gene expression during development of aerenchyma formation in wheat. Plant Signaling and Behavior. 1: 13(2). 
  32. Yildiz, M. and Terzi, H. (2013). Effect of NaCl Stress on Chlorophyll Biosynthesis, Proline, Lipid Peroxidation and Antioxidative Enzymes in Leaves of Salt-Tolerant and Salt-Sensitive Barley Cultivars. Journal of Agricultural Sciences. 19: 79-88.
  33. Zhao, G.Q., Ma, B.L., Ren, C.Z. (2007). Growth, gas exchange, chlorophyll fluorescence and ion content of naked oat in response to salinity. Crop science. 47: 123-131. 
  34. Zörb, C., Geilfus, C.M., Dietz, K.J. (2019). Salinity and crop yield. Plant Biology. 21: 31-38.

Global Footprints