Effects of Durum Wheat (Triticum durum Desf.) Inoculation with PGPR (Azospirillum brasilense, Bacillus sp and Frankia CcI3) and Its Tolerance to Water Deficit

DOI: 10.18805/IJARe.A-516    | Article Id: A-516 | Page : 437-444
Citation :- Effects of Durum Wheat (Triticum durum Desf.) Inoculation with PGPR (Azospirillum brasilense, Bacillus sp and Frankia CcI3) and Its Tolerance to Water Deficit.Indian Journal Of Agricultural Research.2020.(54):437-444
Benmati. M, Mouellef. A, Belbekri. N, Djekoun. A benmati.m@gmail.com
Address : Laboratoire de biotechnologies, Ecole Nationale Supérieur de Biotechnologie, Constantine. 
Submitted Date : 17-12-2019
Accepted Date : 2-03-2020


Plant-growth-promoting rhizobacteria can improve plant growth, development and stress adaptation. However, the underlying mechanisms are still largely unclear. We investigated the effects of Azospirillum brasilense, Bacillus sp and Frankia CcI3 on durum wheat. Our study consisted in the evaluation of the interaction between rhizosphere microorganisms isolated from soils of different regions of Eastern Algeria and two varieties of durum wheat (GTA- dur and WAHA). Furthermore, our studies have also been carried out on the same durum wheat varieties under water deficit condition for the evaluation of the capacities of these PGPR in the restoration of their growth and in the increase of the production. The obtained results confirm the significant abilities of PGPR under these stress conditions for maintaining growth and plant survival.


Azospirillum brasilense Bacillus sp Durum wheat Frankia CcI3 Water deficit


  1. Ashraf, M. and Foolad, M.R. (2007). Roles of Glycine Betaine and Proline in Improving Plant Abiotic Stress Resistance. Environmental and Experimental Botany. 59: 206-216.
  2. Azlin C O, Amir H G and Chan L K. (2005). Isolation and characteri- -zation of diazotrophic rhizobacteria from oil palm roots. Malaysian Journal of Microbiology. 1: 32–36.
  3. Barrs H .(1968). Determination of water deficit in plant tissues. In: Water Deficit and Plant Growth. Koslowski T. Academy Press New York. 235-368.
  4. Barrow, J.R.; Lucero, M.E.; Reyes-Vera, I.; Havstad, K.M. (2008). Dosymbiotic microbes have a role in plant evolution, performance and response to stress? Commun. Integr. Biol. 1: 69–73.
  5. Benmati M, Le Roux C, Belbekri N, Ykhlef N and Djekoun A. (2013). Phenotypic and molecular characterization of plant growth promoting Rhizobacteria isolated from the rhizosphere of wheat (Triticum durum Desf.) in Algeria. African Journal of Microbiology. 7: 2893-2904.
  6. Bashan, Y. and Levanony, Y. (1991). Alterations in membrane potential and in proton efflux in plant roots induced by Azospirillum brasilense. Plant Soil. 137: 99-103.
  7. Bresson, J.; Varoquaux, F.; Bontpart, T.; Touraine, B.; Vile, D. (2013). The PGPR strain Phyllobacterium brassicacearum STM196 induces a reproductive delay and physiological changes that result in improved drought tolerance in Arabidopsis. New Phytol. 200: 558–569.
  8. Chakraborty, U.; Chakraborty, B.; Basnet, M. (2006).Plant growth promotion and induction of resistance in Camellia sinensis by Bacillus megaterium. J. Basic Microbiol. 46: 186–195.
  9. Cho, S.M.; Kang, B.R.; Han, S.H.; Anderson, A.J.; Park, J.Y.; Lee, Y.H.; Cho, B.H.; Yang, K.Y.; Ryu, C.M.;Kim, Y.C. (2008). 2R, 3R-butanediol, a bacterial volatile produced by Pseudomonas chlororaphis O6, is involved in induction of systemic tolerance to drought in Arabidopsis thaliana. Mol. Plant Microbe Interact. 21: 1067–1075.
  10. Clarck and Mac-Caig. (1982). Excised leaf water relation capability as an indicator of drought resistance of Triticum genotypes. Can. J Plant Sci. 62: 571-576.
  11. Coleman-Derr, D.; Tringe, S.G. (2014). Building the crops of tomorrow: Advantages of symbiont-based approaches to improving abiotic stress tolerance. Front. Microbiol. 5: 283.
  12. Dubois M., Gilles K.A., Hamilton P.A., Ruberg A. and Smith F. (1956). Colorimetric method for determination of sugars and related substances. Analytical Chemistry. 28: 350-    356.
  13. Fisher, D.J.; McKinnon, J.J.; Mustafa, A.F.; Christensen, D.A.; McCartney, D. (1999). Evaluation of wheat-based thin stillage as a water source for growing and finishing beef cattle. J. Anim. Sci. 77: 2810-2816.
  14. Gill HS, et al. (2002). Multicopy crystallographic refinement of a relaxed glutamine synthetase from Mycobacterium tuberculosis highlights flexible loops in the enzymatic mechanism and its regulation. Biochemistry. 41: 9863-72.
  15. Herbinger K., Tausz M., Wonisch A., Soja G., Sorger A. and Grill D. (2002). Complex interactive effects of drought and ozone stress on the antioxidant defence systems of two wheat cultivars. Plant Physiol. Biochem. 40: 691-696.
  16. Kloepper J.W. (1993). Plant growth-promoting rhizobacteria as biological control agents. In: Metting FB Jr (ed) Soil microbial ecology-applications in agricultural and environ- -mental management. Marcel Dekker, Inc., New York, 255–274.
  17. Miransari, M., Bahrami, H.A., Rejali, F., Malakouti, M.J. (2008). Using arbuscular mycorrhiza to reduce the stressful effects of soil compaction on wheat (Triticum aestivum L.) growth. Soil Biology and Biochemistry. 40: 1197-1206.
  18. Nouri L. (2002). Ajustement osmotique et maintien de l’activité photosynthétique chez le blé dur (Triticum durum, Desf), en condition de déficit hydrique. Thèse de Magistère en Biologie végétale Univ Mentouri. Constantine. 77.
  19. Rasio A., Sorrentinio G., Cedola M.C., Pastore D. and Wittner G. (1987). Osmotic and elasticadjustment of durum wheat leaves under stress conditions. Genetic Agr. 41: 427-    436.
  20. Reddy, P.S. and Veeranjaneyulu, K. (1991). Proline metabolism in senescing leaves of horsgram (Macrotyloma uniflorum Lam.). J. Plant. Physiol. pp: 381-383.
  21. Rodriguez RJ, Henson J, Van Volkenburgh E, Hoy M, Wright L, Beckwith F, Kim YO, Redman RS .(2008). Stress tolerance in plants via habitat-adapted symbiosis. ISME J. 2: 404-    416.
  22. Sarig, S., Blum, A. and Okon, Y. (1988). Improvement of the water status and yield of fieldgrown grain sorghum (Sorghum bicolor) by inoculation with Azospirillum brasilense. J. Agric. Sci. 110: 271–277.
  23. Verbruggen, N., Hua, X.J., May, M., VanMontagu, M. (1996). Environmental and developmental signals modulate proline homeostasis: Evidence for a negative tran- scriptional regulator. Proceedings of the National. 93: 8787–8791.
  24. Zhang, N.; Sun, Q.; Zhang, H.; Cao, Y.; Weeda, S.; Ren, S.; Guo, Y.D. (2015). Roles of melatonin in abiotic stress resistance in plants. J. Exp. Bot. 66: 647–656.
  25. Zhou, C.; Guo, J.S.; Zhu, L.; Xiao, X.; Xie, Y.; Zhu, J.; Ma, Z.Y.; Wang, J.F.(2016). Paenibacillus polymyxa BFKC01 enhances plant iron absorption via improved root systems and activated iron acquisition mechanisms. Plant Physiol. Biochem. 105: 162–173.
  26. Zhou, C.; Zhu, L.; Ma, Z.Y.; Wang, J.F. (2015). A homolog of Class IV HD-Zip transcription factors, EsHdzip1, confers drought resistance in tobacco via enhanced the capacity of water conserving and absorbing. Acta Physiol. Plant. 37: 124.
  27. Zhu, J.K. (2002). Salt and drought stress signal transduction in plants. Annu. Rev. Plant Biol. 53: 247–273.

Global Footprints