Indian Journal of Agricultural Research

  • Chief EditorT. Mohapatra

  • Print ISSN 0367-8245

  • Online ISSN 0976-058X

  • NAAS Rating 5.60

  • SJR 0.293

Frequency :
Bi-monthly (February, April, June, August, October and December)
Indexing Services :
BIOSIS Preview, ISI Citation Index, Biological Abstracts, Elsevier (Scopus and Embase), AGRICOLA, Google Scholar, CrossRef, CAB Abstracting Journals, Chemical Abstracts, Indian Science Abstracts, EBSCO Indexing Services, Index Copernicus
Indian Journal of Agricultural Research, volume 52 issue 6 (december 2018) : 587-595

Biological alternates to synthetic fertilizers: efficiency and future scopes

Rajinder Kaur, Sukhminderjit Kaur
1Department of Biotechnology, Chandigarh University, Gharaun, Mohali-140 413, Punjab, India.
Cite article:- Kaur Rajinder, Kaur Sukhminderjit (2018). Biological alternates to synthetic fertilizers: efficiency and future scopes. Indian Journal of Agricultural Research. 52(6): 587-595. doi: 10.18805/IJARe.A-5117.
The nutrient availability to plants is major limiting factor determining the crop production. Chemical fertilizers are, no doubt, a milestone to fulfill the nutrient deficiency but presently mankind is facing a huge threat of environment damage as well as resource depletion. At the same time population explosion is also a major concern. To feed such a large population (8.5 × 109 in 2025) unexploited resources should be used to enhance the crop production and to improve quality of soil. The various plant specific nitrogen fixing, phosphate solubilizing, potassium solubilizing and zinc mobilizing microorganisms can be used to enhance the bioavailability of nutrients to plants. This biological method is not only sustainable for long run but also economical and thus can be used as biofertilizers. These microorganisms can be commercially made available to farmers in the form of carrier based, liquid or encapsulated formulations containing latent or active forms. Apart from nutrient mobilization, they can also act as bioenhancers and biopesticides. However, efficiency and acceptance of biofertilizer among farmers is still a big concern. This review article focuses on efficiency of biofertilizers to replace or supplement the synthetic fertilizers for soil fertilization. 
  1. Abaid-Ullah, M., Nadeem, M., Hassan, M., Ganter, J., Muhammad, B., Nawaz, K., Hafeez, F. Y. (2015). Plant growth promoting rhizobacteria: an alternate way to improve yield and quality of wheat (Triticum aestivum). International Journal of Agriculture and Biology, 17(1): 51-60.
  2. Afzal, A. and Asghari, B. (2008). Rhizobium and phosphate solubilizing bacteria improve the yield and phosphorus uptake in wheat. (Triticumaestivum L.). International Journal of Agricultural Biotechnology,10: 85–88.
  3. Ahmad, M., Zahir, Z.A., Asghar, H.N., Arshad, M. (2012). The combined application of rhizobial strains and plant growth promoting rhizobacteria improves growth and productivity of mung bean (Vignaradiata L) under salt–stressed conditions. Annals of Microbiology, 62:1321–1330. 
  4. Alloway, B.J. (2008). Zinc in soils and crop nutrition. In: Brussels (ed), 2nd edn. International Fertilizer Industry Association, Paris, pp. 139. 
  5. Baldani, V.L., Baldani, J., Dobereiner, J. (2000). Inoculation of rice plants with the endophytic diazotrophs Herbaspirillumseropedicae and Burkholderia spp. Biology and Fertility of Soils, 30: 485–491. 
  6. Basak, B.B. and Biswas, D.R. (2009). Influence of potassium solubilising microorganism (Bacillusmucilaginosus) and waste mica on potassium uptake dynamics by Sudan grass (Sorghumvulgare Pers) grown under two Alfisols. Plant Soil, 317: 235–255. 
  7. Bashan, Y. (1986). Significance of timing and level of inoculation with rhizosphere bacteria on wheat plants. Soil Biology and Biochemistry, 18: 297-301.
  8. Bashan, Y., Moreno, M., Troyo, E. (2000). Growth promotion of the seawater-irrigated oil seed halophyte Salicorniabigelovii inoculated with mangrove rhizosphere bacteria and halotolerant Azospirillum sp. Biology and Fertility of Soils, 32: 265–272. 
  9. Beneduzi, A., Peres, D., Vargas, L.K., Bodanese-Zanettini, M.H., Passaglia, L.M.P. (2008). Evaluation of genetic diversity and plant growth promoting activities of nitrogen-fixing bacilli isolated from rice fields in South Brazil. Applied Soil Ecology, 39: 311-320.
  10. Bergottini, V.M., Otegui, M.B., Sosa, D.A., Zapata, P.D., Mulot, M., Rebord, M., Zopfi, J., Wiss, F., Benrey, B., Junier, P. (2015). Bio-    inoculation of yerba mate seedlings (Ilexparaguariensis St Hill) with native plant growth-promoting rhizobacteria: A sustainable alternative to improve crop yield. Biology and Fertility of Soils, 51: 749–755. 
  11. Cassidy, M.B., Lee, H., Trevors, J.T. (1996). Environmental applications of immobilized microbial cells: A review. The Journal of Industrial Microbiology, 16: 79-101. 
  12. Costa, E.M., Lima, W., Oliveira-Longatti, S.M., Souza, F.M. (2015). Phosphate-solubilising bacteria enhance Oryzasativa growth and nutrient accumulation in an oxisol fertilized with rock phosphate. Ecological engineering, 83: 380–385.
  13. Daza, A., Santamaria, C., Rodriguez-Navarro, D.N., Camacho, M., Orive, R., Temprano, F. (2000). Perlite as a carrier for bacterial inoculants. Soil Biology and Biochemistry, 325: 67-72. 
  14. Deepak, J., Geetam, N., Sachin, V., Anita, S. (2013). Enhancement of wheat growth and Zn content in grains by zinc solubilizing bacteria. International Journal of Ecology, Environment and Agriculture Research, 6: 363–370. 
  15. Dey, R., Pal, K.K., Bhatt, D.M., Chauhan, S.M. (2004). Growth promotion and yield enhancement of peanut (Arachishypogaea L) by application of plant growth promoting rhizobacteria. Microbiology Resource, 159: 371–394. 
  16. Dommergues, Y., Diem, H.G., Divies, C. (1979) Polyacrylamide-encapsulated Rhizobium as an inoculant for legumes. Applied and Environmental Microbiology, 37: 779–781. 
  17. Dudeja, S.S., Khurana, A.L., Kundu, B.S. (1981). Effect of rhizobium and phosphorus-micro-organisms on yield and nutrient uptake in chickpea. Current Science, 50: 503-505. 
  18. Dulieu, C., Poncelet, D., Neufeld, R.J. (1999). Encapsulation and Immobilization Techniques. In: Kühtreiber WM, Lanza RP and ChickWL (ed) Cell Encapsulation Technology and Therapeutics, Birkhäuser, Boston, pp. 3-17.
  19. Edrisi, S.A., Dubey, R.K., Bakshi, M., Dubey, P.K., Singh, H.B., Ebbs, S.D. (2016). Sustainability of crop production from polluted lands. Energy, Ecology and Environment, 1: 54-65. 
  20. El-Katatny, M.H., Hetta, A.M., Shaban, G.M., El-Komy, H.M.A. (2003). Improvement of cell wall degrading enzymes production by alginate encapsulated Trichoderma spp. Food Technology and Biotechnology, 41: 219–225. 
  21. Garcia-Gutiérrez, L., Zeriouh, H., Romero, D., Cubero, J., Vicente, A., Pérez-Garcia, A. (2013). The antagonistic strain Bacillussubtilis UMAF6639 also confers protection to melon plants against cucurbit powdery mildew by activation of jasmonate-and salicylic acid-dependent defence responses. Microbial Biotechnoogy, 6: 264–274. 
  22. Goss, G.R., Baldwin, H.M., Riepl, R.G. (2003). Clays as biological carriers. In: Downer RA, Mueninghoff JC and Volgas GC (ed) Pesticide formulations and delivery systems: Meeting the challenges of the current crop protection industry. American Society for Testing and Materials, Dallas, pp. 24–34. 
  23. Gulden, R.H., Vessey, J.K. (2000). Penicilliumbilaii inoculation increases root-hair production in field pea. Canadian Journal of Plant Science, 80: 801–804. 
  24. Gupta, G.S.S., Parihar, N.K., Ahirwar, S.K., Snehi, V. (2015). Plant growth promoting rhizobacteria (PGPR): Current and future prospects for development of sustainable agriculture. Journal of Microbial & Biochemical Technology, 7: 96–102. 
  25. Han, H.S., Lee, K.D. (2005). Phosphate and potassium solubilizing bacteria effect on mineral uptake soil availability and growth of eggplant. Research Journal of Agriculture and Biological Sciences, 1: 176–180. 
  26. Hayat, R., Ali, S., Amara, U., Khalid, R., Ahmed, I. (2010). Soil beneficial bacteria and their role in plant growth promotion: A review. Annals of Microbiology, 60: 579-598. 
  27. Hazarika, B. N., Ansari, S. (2007). Biofertilizers in fruit crops-A review. Agricultural Reviews-Agricultural Research Communications Centre India, 28: 69.
  28. Huang, X.F., Chaparro, J.M., Reardon, K.F., Zhang, R., Shen, Q., Vivanco, J.M. (2014). Rhizosphere interactions: Root exudates microbes and microbial communities. Botany, 92: 267–275. 
  29. Hussain, A.M., Arshad, Z.A., Zahir, Asghar, M. (2015). Prospects of zinc solubilizing bacteria for enhancing growth of maize.Pakistan    journal of agricultural sciences, 52: 915-922. 
  30. Illmer, P., Schinner, F. (1992). Solubilization of inorganic phosphates by microorganisms isolated from forest soil. Soil Biology and Biochemistry, 24: 389–395. 
  31. Jahanian, A., Chaichi, M.R., Rezaei, K., Rezayazdi, K., Khavazi, K. (2012). The effect of plant growth promoting rhizobacteria (PGPR) on germination and primary growth of artichoke (Cynarascolymus). International Journal of Applied Agricultural    Sciences, 4: 923–929. 
  32. Jha, C.K., Saraf, M. (2015). Plant growth promoting rhizobacteria (PGPR): A review. Journal of Agriculture and Rural Development, 5: 108–119. 
  33. Joy, E.J., Ahmad, W., Zia, M.H., Kumssa, D.B., Young, S.D., Ander, E.L., Watts, M.J., Stein, A.J., Broadley, M.R. (2017). Valuing increased zinc (Zn) fertiliser-use in Pakistan. Plant Soil, 411: 139–150. 
  34. Kamkar, B. (2016). Sustainable Development Principles for Agricultural Activities. Advances in Plants & Agriculture Research, 3: 1–2. 
  35. Kamran, S., Shahid, I., Baig, D.N., Rizwan, M., Malik, K.A., Mehnaz, S. (2017). Contribution of zinc solubilizing bacteria in growth promotion and zinc content of wheat. Frontiers in microbiology, 8: 2588- 2593. 
  36. Khan, M. A., Mingzhi, W., Lim, B. K., & Lee, J. Y. (2008). Utilization of waste paper for an environmentally friendly slow-release fertilizer. Journal of wood science, 54: 158-161.
  37. Khan, M. S., Zaidi, A., Ahemad, M., Oves, M., Wani, P. A. (2010). Plant growth promotion by phosphate solubilizing fungi–current perspective. Archives of Agronomy and Soil Science, 56: 73-98.
  38. Khan, T. A., Mazid, M., & Mohammad, F. (2011). Role of Nitric oxide in regulation of H2O2 mediating tolerance of plants to abiotic stress&58; A synergistic signaling approach. Journal of Stress Physiology & Biochemistry, 7: 34-74.
  39. Khande, R., Sharma, S. K., Ramesh, A., & Sharma, M. P. (2017). Zinc solubilizing Bacillus strains that modulate growth, yield and zinc biofortification of soybean and wheat. Rhizosphere, 4: 126-138.
  40. Kloepper, J.W., Schroth, M.N. (1981). Development of a powder formulation of rhizobacteria for inoculation of potato seed pieces. Phytopathology, 71: 590-592. 
  41. Kukreja, K., Suneja, S., Goyal, S., & Narula, N. (2004). Phytohormone production by Azotobacter-a review. Agricultural Reviews-    Agricultural Research Communications Centre India, 25, 70-75.
  42. Kumar, A., Maurya, B. R., Raghuwanshi, R., Meena, V. S., & Islam, M. T. (2017). Co-inoculation with Enterobacter and Rhizobacteria on yield and nutrient uptake by wheat (Triticum aestivum L.) in the alluvial soil under indo-gangetic plain of India. Journal of plant growth Regulation, 36: 608-617.
  43. Kumar, V., Behl, R. K., Narula, N. (2001). Establishment of phosphate-solubilizing strains of Azotobacter chroococcum in the rhizosphere and their effect on wheat cultivars under green house conditions. Microbiological research, 156(1): 87-93.
  44. Lery, L. M. S., von Krüger, W. M. A., Viana, F. C., Teixeira, K. R. S., & Bisch, P. M. (2008). A comparative proteomic analysis of Gluconacetobacter diazotrophicus PAL5 at exponential and stationary phases of cultures in the presence of high and low levels of inorganic nitrogen compound. Biochimica et Biophysica Acta (BBA)-Proteins and Proteomics, 1784: 1578-1589. 
  45. Lucy, M., Reed, E., and Glick, B. R. (2004). Applications of free living plant growth-promoting rhizobacteria. Antonie van leeuwenhoek,    86: 1-25.
  46. Lynch, J.M. (1990). Introduction: some consequences of microbial competence for plant and soil in the Rhizosphere. In: Lynch JM (ed) John Wiley & Sons, pp. 1-10.
  47. Malik, K.A., Mirza, M.S., Hassan, U., Mehnaz, S., Rasul, G., Haurat, J., Bally, R., Normand, P. (2002). The role of plant-associated beneficial bacteria in rice-wheat cropping system. Journal of Phytology, 2: 42-54.
  48. McLoughlin, A. J. (1994). Controlled release of immobilized cells as a strategy to regulate ecological competence of inocula. In Biotechnics/    Wastewater (pp. 1-45). Springer, Berlin, Heidelberg.
  49. Meeks, J.C., Campbell, E.L., Summers, M.L., Wong, F.C. (2002). Cellular differentiation in the Cyanobacterium Nostoc punctiforme. Archives of Microbiology, 178: 395–403. 
  50. Mishra DJ, Rajivir S, Mishrra UK, Kumar SS (2013). Role of biofertilizers in organic agriculture: A review. Research Journal of Recent Sciences, 2: 39-41. 
  51. Mnyone, L.L., Kirby, M.J., Lwetoijera, D.W., Mpingwa, M.W., Knols, B.G., Takken, W., Russell, T.L. (2009). Infection of the malaria mosquito Anophelesgambiae with two species of entomopathogenic fungi: Effects of concentration, co-formulation exposure time and persistence. Malaria Journal. 8: 309. 
  52. Mutch, L. A., Young, J. P. W. (2004). Diversity and specificity of Rhizobium leguminosarum biovar viciae on wild and cultivated legumes. Molecular Ecology, 13: 5-2444.
  53. Narendranath, N.V. (1995). Shelf life of Rhizobium inoculant as influenced by carries and storage conditions, M Sc (Ag) Thesis, Tamil Nadu Agricultural University, India. 
  54. Nath, D., Maurya, B. R., Meena, V. S. (2017). Documentation of five potassium-and phosphorus-solubilizing bacteria for their K and P-solubilization ability from various minerals. Biocatalysis and agricultural biotechnology, 10: 174-181.
  55. Naz, I., Ahmad, H., Khokhar, S. N., Khan, K., and Shah, A. H. (2016). Impact of zinc solubilizing bacteria on zinc contents of wheat.    American-Eurasian Journal of Agricultural & Environmental Sciences, 16: 449-454. 
  56. Neeraja, C., Anil, K., Purushotham, P., Suma, K., Sarma, P. V. S. R. N., Moerschbacher, B. M., & Podile, A. R. (2010). Biotechnological approaches to develop bacterial chitinases as a bioshield against fungal diseases of plants. Critical reviews in biotechnology, 30: 231-241.
  57. Patil, M. G., Sayyed, R. Z., Chaudhari, A. B., & Chincholkar, S. B. (2002). Phosphate solubilizing microbes: a potential bioinoculant for efficient use of phosphate fertilizers. Bioinoculants for sustainable agriculture and forestry. Scientific Publisher, Jodhpur, 107-118.
  58. Pawar, A., Syed, I., Swati, M., & Patil, V. D. (2015). Solubilization of insoluble zinc compounds by different microbial isolates in vitro condition. International Journal of Tropical Agriculture, 33: 865-869.
  59. Ponmurugan, P., Gopi, C. (2006). Distribution pattern and screening of phosphate solubilizing bacteria isolated from different food and forage crops. Journal of Agronomy, 5: 600-604. 
  60. Prajapati, K.B., Modi, H.A. (2012). Isolation and characterization of potassium solubilizing bacteria from ceramic industry soil. CIB Technical Journal of Microbiology, 1: 8-14. 
  61. Rashid, S., Charles, T.C., Glick, B.R. (2012). Isolation and characterization of new plant growth promoting bacterial endophyte. Applied Soil Ecology, 61: 217–224. 
  62. Rose, M. T., Deaker, R., Potard, S., Tran, C. K. T., Vu, N. T. and Kennedy, I. R. (2011). The survival of plant growth promoting microorganisms in peat inoculant as measured by selective plate counting and enzyme-linked immunoassay. World Journal of Microbiology and Biotechnology, 27: 1649-1659.
  63. Saikia, J., Saikia, L., Borbora, D., Nath, D. J. (2017). Effect of biofertilizer consortium on yield, quality and soil health of french bean (Phaseolus vulgaris L.). Legume Research- Agricultural Research Communications Centre India, 1: 1-4. 
  64. Sangeeth, K. P., Bhai, R. S., & Srinivasan, V. (2012). Paenibacillus glucanolyticus, a promising potassium solubilizing bacterium isolated from black pepper (Piper nigrum L.) rhizosphere. Journal of Spices and Aromatic Crops, 21: 118-124.
  65. Saravanan, V.S., Madhaiyan, M., Thangaraju, M. (2007). Solubilization of zinc compounds by the diazotrophic plant growth promoting bacterium Gluconacetobacter diazotrophicus. Chemosphere 66: 1794–1798. 
  66. Sehrawat, A., Yadav, A., Anand, R. C., Kukreja, K., & Suneja, S. (2017). Enhancement of shelf life of liquid biofertilizer containing Rhizobium sp. infecting mungbean (Vigna radiata L.). Legume Research: An International Journal, 40: 4.
  67. Seneviratne, G., Kulasooriya, S.A. (2013). Reinstating sol microbial diversity in agroecosystems: The need of the hour for sustainability and health. Agriculture, Ecosystems and Environment 164: 181–182. 
  68. Shanmugam, V., Kanoujia, N. (2011). Biological management of vascular wilt of tomato caused by Fusariumoxysporum f sp lycospersici by plant growth promoting rhizobacterial mixture. Biological control 57: 85-93. 
  69. Sheldon, R.A. (2007). Enzyme immobilization the quest for optimum performance. Advanced Synthesis & Catalysis, 349: 1289-1307. 
  70. Shrivastava, S., Prasad, R., Varma, A. (2014). Anatomy of root from eyes of a microbiologist. Root Engineering, 3–22. 
  71. Singh, Z., Singh, G. (2018). Role of Rhizobium in chickpea (Cicer arietinum) production-A review. Agricultural Reviews, 39: 31-39.
  72. Sridevi, M., Mallaiah, K.V., Yadav, N.C.S. (2007). Phosphate solubilization by Rhizobium isolates from Crotalaria species. Journal of Plant Scence, 2: 635-639. 
  73. Temprano, F.J., Albareda M, Camacho M, Daza A, Santamaría C, Rodríguez-Navarro DN (2002). Survival of several Rhizobium/    Bradyrhizobium strains on different inoculant formulations and inoculated seeds. International Microbiology, 5: 81–86. 
  74. Tilman, D., Cassman, K.G., Matson, P.A., Naylor, R., Polasky, S. (2002). Agricultural sustainability and intensive production practices. Nature, 418: 671-677. 
  75. Timmusk, S., Behers, L., Muthoni, J., Muraya, A., & Aronsson, A. C. (2017). Perspectives and challenges of microbial application for crop improvement. Frontiers in plant science, 8: 49.
  76. Trevors JT, Elsas JD, Lee H, Overbeek LS (1992). Use of alginate and other carriers for encapsulation of microbial cells for use in soil. Microbial Releases, 1: 61-69. 
  77. Vaid, S. K., Kumar, B., Sharma, A., Shukla, A. K., & Srivastava, P. C. (2014). Effect of Zn solubilizing bacteria on growth promotion and Zn nutrition of rice. Journal of soil science and plant nutrition, 14: 889-910.
  78. Vassilev N, Vassileva M, Fenice M, Federici F (2001). Immobilized cell technology applied in solubilization of insoluble inorganic (Rocks) phosphates and P plant acquisitions. Biores. Technol.79: 263–271. 
  79. Wakatsuki, T. (1995). Metal oxidoreduction by microbial cells. Journal of Industrial Microbiology, 14: 169–177. 
  80. Xie, G. H., Cai, M. Y., Tao, G. C., and Steinberger, Y. (2003). Cultivable heterotrophic N 2-fixing bacterial diversity in rice fields in the Yangtze River Plain. Biology and Fertility of Soils, 37: 29-38.
  81. Yanni YG, Rizk RY, Abd El-Fattah FK, Squartini A, Corich V, Giacomini A, Bruijn F, Rademaker J, Maya-Flores J, Ostrom P, Vega-    Hernandez M, Hollingsworth RI, Martinez-Molina E, Mateos P, Velazquez E, Wopereis J, Triplett E, Umali-Garcia M, Anarna JA, Rolfe BG, Ladha JK, Hill J, Mujoo R, Ng PK, Dazzo FB (2001). The beneficial plant growth-promoting association of Rhizobium leguminosarum bv. trifolii with rice roots. Functional Plant Biology, 28: 845-870.
  82. Zhou Y, Xia X, Yu G, Wang J, Wu J, Wang M, Yang Y, Shi K, Yu Y, Chen Z, Gan J, Yu J (2015). Brassinosteroids play a critical role in the regulation of pesticide metabolism in crop plants. Scientific reports, 5: 9018. 

Editorial Board

View all (0)