Indian Journal of Agricultural Research

  • Chief EditorV. Geethalakshmi

  • Print ISSN 0367-8245

  • Online ISSN 0976-058X

  • NAAS Rating 5.60

  • SJR 0.293

Frequency :
Bi-monthly (February, April, June, August, October and December)
Indexing Services :
BIOSIS Preview, ISI Citation Index, Biological Abstracts, Elsevier (Scopus and Embase), AGRICOLA, Google Scholar, CrossRef, CAB Abstracting Journals, Chemical Abstracts, Indian Science Abstracts, EBSCO Indexing Services, Index Copernicus
Indian Journal of Agricultural Research, volume 54 issue 5 (october 2020) : 578-584

Light Intensity and Biofertilizers Effect on Natural Indigo Production and Nutrient Uptake of Indigofera tinctoria L.

D. Setyaningrum, M.T.S Budiastuti, B. Pujiasmanto, D. Purnomo, Supriyono
1Graduate School of Agronomy, Universitas Sebelas Maret, Indonesia. 
Cite article:- Setyaningrum D., Budiastuti M.T.S, Pujiasmanto B., Purnomo D., Supriyono (2020). Light Intensity and Biofertilizers Effect on Natural Indigo Production and Nutrient Uptake of Indigofera tinctoria L.. Indian Journal of Agricultural Research. 54(5): 578-584. doi: 10.18805/IJARe.A-507.
This research investigated the effect of light intensity and biofertilizer on the yield, which includes the production of indigo compounds and plant nutrient uptake. The study used a randomized complete block design with a split plot design with 4 levels of light intensity as the main plots and 4 levels of biofertilizer as a sub plots with 3 replications. The combination of light intensity and biofertilizer affects fresh weight, biomass and tissue nitrogen. The highest fresh weight and biomass was found at 100% light intensity with double inoculation of mycorrhizae and rhizobium. Whereas the highest tissue nitrogen was at 10% light intensity with double inoculation of mycorrhizae and rhizobium. The production of indigo affected by light intensity, ie at 10% light intensity indicates the highest indigo. Mycorrhizae and rhizobium have a synergistic relationship as biofertilizer in increasing plant yields and nutrient uptakes in 100% light intensity.
  1. Abd-Alla, M.H., El-Enany, A.E., Nafady, N.A., Khalaf, D.M., Morsy, F.M. (2014). Synergistic interaction of Rhizobium legumi- -nosarum bv.viciae and arbuscular mycorrhizal fungi as a plant growth promoting biofertilizers for faba bean (Viciafaba L.) in alkaline soil. Microbiological Research. 169: 49–58. DOI: 10.1016/j.micres.2013.07.007
  2. Attia, A.A., Girgis, B.S., Fathy, N.A. (2008). Removal of methylene blue by carbons derived from peach stones by H3PO4 activation: Batch and column studies. Dyes and Pigments. 76: 282–289.
  3. Baligar, V.C., Fageria, A.Q., Paiva, A., Silveira, A.W.V., Pomella, R.C.R.,Machado. (2006). Light intensity effects on growth and micronutrient uptake by tropical legume cover crops. Journal of Plant Nutrition. 29: 1959–1974
  4. Ballhorn, D.J., Schädler, M., Elias, J.D., Millar, J.A., Kautz, S. (2016). Friend or Foe—Light Availability Determines the Relationship between Mycorrhizal Fungi, Rhizobia and Lima Bean (Phaseolus lunatus L.). PLoS ONE. 11: 1-12. DOI:10. 1371/journal. pone.0154116.
  5. Campeol, E., Luciana, G., Angelini., Tozzi, S., Bertolacci M. (2006). Seasonal variation of indigo precursors in Isatis tinctoria L. and Polygonum tinctorium Ait. as affected by water deficit. Environmental and Experimental Botany. 58: 223–    233. 
  6. Chanayath, N., Lhieochaiphant, S., Phutrakul, S. (2002). Pigment Extraction Techniques from the Leaves of Indigofera tinctoria Linn. and Baphicacanthus cusia Brem. and Chemical Structure Analysis of Their Major Components. Chiang Mai University Journal. 1: 149.
  7. Coelho, G.C., Rachwal, M.F.G., Dedecek, R.A., Curcio, G.R., Nietsche, K., Schenkel, E.P. (2007). Effect of light intensity on methylxanthine contents of Ilex paraguariensis A. St. Hil. Biochemical Systematics and Ecology. 35: 75–80.
  8. Franzini, V.I., Azcón, R., Mendes, F.L., Aroca, R. (2010) Interactions between Glomus species and Rhizobium strains affect the nutritional physiology of drought-stressed legume hosts. J Plant Physiol. 167: 614–619. DOI: 10.1016/j.jplph. 2009.11.010 PMID: 20044167. 
  9. Gul, A., Salam, A., Afridi, M.S., Bangash, N.K., Ali, F., Ali, M.Y., Khan, S., Mubeeen, R. 2019. Effect of urea, bio-fertilizers and their interaction on the growth, yield and yield attributes of Cyamopsis Tetragonoloba. Indian Journal of Agricultural Resesrch. 53: 423-428.
  10. Hao, Z., Xie, W., Jiang, X., Wu, Z., Zhang, X., Chen, B. (2019). Arbuscular Mycorrhizal Fungus Improves Rhizobium Glycyrrhiza Seedling Symbiosis under Drought Stress. Agronomy. 9: 572.
  11. Hariri, M.F., Chikmawati, T., Hartana, A. (2017). Genetic diversity of Indigofera tinctoria L. in Java and Madura islands as natural batik dye based on intersimple sequence repeat markers. J Math Found Sci. 49: 105-115.
  12. Inouea, S., Moriyaa, T , Moritaa, R., Kuwatab, K., Thulc, S.T., Bijaya, K., Sarangic., Minamia, K. (2017). Characterization of UDP-glucosyltransferase from Indigofera tinctoria. Plant Physiology and Biochemistry. 121: 226–233.
  13. Larimer, A.L., Clay, K., Bever, J.D. (2014). Synergism and context dependency of interactions between arbuscular mycorrhizal fungi and rhizobia with a prairie legume. Ecology. 95: 1045–1054.
  14. Lee, K.H., Jeong, H.J., Kim, H.J., Lim, A.S. (2017). Nitrate uptake of the red tide dinoflagellate Prorocentrum micans measured using a nutrient repletion method: effect of light intensity. Algae. 32: 139-153. DOI.org/10.4490/ algae.2017.32.5.20.
  15. Li, A.R., Smith, F.A., Smith, S.E., Guan, K.Y. (2012). Two sympatric root hemiparasitic Pedicularis species differ in host dependency and selectivity under phosphorus limitation. Functional Plant Biology. 39: 784–794.
  16. Li, Q.Z., Sun, J.H., Wei, X.J., Christie, P., Zhang, F.-S., Li, L. (2011). Overyielding and interspecific interactions mediated by nitrogen fertilization in strip intercropping ofmaize with faba bean, wheat and barley. Plant and Soil. 339: 147–161.
  17. Liu, B., Liu, X, B., Liu, C., Wang, Y.S., Li, J., Herbert, S. J. (2010). Soybean yield and yield component distribution across the main axis in response to light enrichment and shading under different densities. Plant Soil Environment. 56: 384–392.
  18. Meng, L., Zhang, A., Wang, F., Han, X., Wang, D., Li, S. (2015). Arbuscular mycorrhizal fungi and rhizobium facilitate nitrogen uptake and transfer in soybean/maize intercropping system. Frontiers in Plant Science. 6: 339. DOI: 10.3389/    fpls.2015.00339
  19. Mengel, K., E. A. Kirkby, H. Kosegarten., T. Appel. (2001). Principles of plant nutrition, 5th edition. Kluwer Academic Publishers, Dordrecht, Netherlands.
  20. Mohamed, I., Eidd, K.E., Mohamed, H., H. Abbasb, Ahmed, A., Saleme., Ahmedf, N., Alib, M., Shahg, G.M., Fanga, C. (2019). Use of plant growth promoting Rhizobacteria (PGPR) and mycorrhizae to improve the growth and nutrient utilization of common bean in a soil infected with white rot fungi. Ecotoxicology and Environmental Safety. 171: 539–548.
  21. Mortimer, P.E., Perez-Fernandez, M.A., Valentin, A.J. (2008). The role of arbuscular mycorrhizal colonization in the carbon and nutrient economy of the tripartite symbiosis with nodulated Phaseolus vulgaris. Soil Biology and Biochemistry. 40: 1019–1027.
  22. Reinhard, S., Weber, E., Martin, P., Marschner,H. (1994) Influence of phosphorus supply and light intensity on mycorrhizal response in Pisum-Rhizobium-Glomus symbiosis. Experientia. 50: 890–896.
  23. Richardson, A.E., Barea, J.M., McNeill, A.M., Prigent-Combaret, C. (2009). Acquisition of phosphorus and nitrogen in the rhizosphere and plant growth promotion by micro- -organisms. Plant and Soil. 321: 305–339. doi:10.1007/    s11104-009-9895-2 
  24. Sefapour, M., Ardakani, M., Khaghani, S., Rejali, F., Zargari, K., Changiz, M., et al. (2011). Response of yield and yield components of three red bean (Phaseolus vulgaris L.) genotypes to co-inoculation with glomus intraradices and Rhizobium phaseoli. Am J Agric Environ Sci. 11: 398–405.
  25. Sharma, M. P., Jaisinghani, K., Sharma, S. K., and Bhatia, V. S. (2012). Effect of Native Soybean Rhizobia and AM Fungi in the Improvement of Nodulation, Growth, Soil Enzymes and Physiological Status of Soybean Under Microcosm Conditions. Agricultural Research. 1: 346–351. doi:10. 1007/s40003-012-0038-2 
  26. Sindhu, P.V., Kanakamany, M.T., Beena, C. (2016). Effect of organic manures and biofertilisers on herbage yield, quality and soil nutrient balance in Indigofera tinctoria cultivation. Journal of Tropical Agriculture. 54: 16-20.
  27. Singh, Z and Singh, G. (2018). Role of Rhizobium in chickpea (Cicer arietinum) production - A review. Agricultural Reviews. 39: 31-39. 
  28. Soil research center. (2009). Chemical analysis of soil, plants, water and fertilizer. Soil Research Institute, Bogor.
  29. Sprent, J.I. (2001). Nodulation in Legumes. Royal Botanic Gardens, Kew, UK.
  30. Stoker, K.G., David, T., Cooke., David, J., Hill. (1998). Influence of light on natural indigo production from woad (Isatis tinctoria). Plant Growth Regulation. 25: 181–185.
  31. Su, B.Y., Song, Y.X., Song, C., Cui, L., Yong, T.W. and Yang, W.Y. (2014). Growth and photosynthetic responses of soybean seedlings to maize shading in relay intercropping system in Southwest China. Photosynthetica. 52: 332–340. doi: 10.1007/s11099-014-0036-7
  32. Sundar, S.K., Palavesam, A., Parthipan, B. (2012). Studies on the synergistic effect of AM fungi and PGPRS on growth and phytochemical properties of medicinally important Indigofera tinctoria L. Journal of Pharmacy Research. 5: 3990-3993.
  33. Taiz, L. and Zeiger, E. (2006). Plant Physiology. 4th Edition, Sinauer Associates Inc. Publishers Massachusetts. 
  34. Tiwari, R., Yadav, R.S., Kumawat, A. (2015). Evaluation of pearlmillet (Pennisetum glaucum) and clusterbean (Cyamopsis tetragonoloba L.) intercropping system under arid western plain zone in India. Indian Journal of Agricultural Research. 49: 229-234.
  35. Van der Heijden, M.G.A., Streitwolf-Engel, R., Riedl, R., Siegrist, S., Neudecker, A., Ineichen, K., et al., (2006). The mycorrhizal contribution to plant productivity, plant nutrition and soil structure in experimental grassland. New Phytologist. 172: 739–752.
  36. Wu, E., Komolpis, K., Wang, H.Y. (1999). Chemical extraction of indigo from Indigofera tinctoria while attaining biological integrity. Biotechnology Techniques. 13: 567–569.
  37. Wu,Y.S., Yang, F., Gong, W.Z., Ahmed,S., Fan, Y.F.,Wu, X.L., Yong, T.W., Liu, W.G., Shu, K., Liu, J., Du, J.B., Yang, W.Y. (2017). Shade adaptive response and yield analysis of difierent soybean genotypes in relay intercropping systems. J. Integr. Agric. 16(6): 1331–1340.
  38. Xia, Z., Zenk, M. (1992) Biosynthesis of indigo precursors in higher plants. Photochemistry. 31: 2695–2697.
  39. Younesi, O., Moradi, A., Namdari, A. (2013). Influence of arbuscular mycorrhiza on osmotic adjustment compounds and antioxidant enzyme activity in nodules of salt-stressed soybean (Glycine max). Acta Agriculturae Slovenica. 101: 219–230.
  40. Zhou T., Wang, L., Li, S., Gao, Y., Du, Y., Zhao, L., Liu, W., Yang, W. (2019) Interactions between light intensity and phosphorus nutrition affect the p uptake capacity of maize and soybean seedling in a low light intensity area. Front. Plant Sci. 10:183. doi: 10.3389/fpls.2019.00183

Editorial Board

View all (0)