Loading...

Isolation and characterization of plant growth promoting endophytic bacteria isolated from Vigna radiata

DOI: 10.18805/IJARe.A-5047    | Article Id: A-5047 | Page : 596-603
Citation :- Isolation and characterization of plant growth promoting endophytic bacteria isolated from Vigna radiata.Indian Journal of Agricultural Research.2018.(52):596-603
Namita Bhutani, Rajat Maheshwari and Pooja Suneja poojapavit@gmail.com
Address : Department of Microbiology, Maharshi Dayanand University, Rohtak-124 001, Haryana, India.
Submitted Date : 5-06-2018
Accepted Date : 7-09-2018

Abstract

A total of 22 endophytic bacteria were isolated from roots and nodules of Vigna radiata (mungbean) obtained from Jind district, Haryana. These were characterized on the basis of plant growth promoting traits. Almost all the endophytic bacteria produced IAA with maximum production of 81.63µg/ml by isolate MJiR8. Among these, 100% root isolates and 84.6% nodule isolates resulted in in vitro root growth promotion of mungbean seedlings. All the isolates produced ammonia; eighteen (all root and nine nodule isolates) produced organic acid while only four root isolates were positive for siderophore production. The four isolates produced hydrogen cyanide and out of these only MJiR9 inhibited the growth of fungal pathogens Fusarium oxysporium and Aspergillus niger. All the endophytes were used to determine molecular diversity by ARDRA (Amplified Ribosomal DNA Restriction Analysis) Results revealed that the nodule isolates were more diverse, being present in separate clusters, in comparison to root isolates which were grouped together in cluster III.

Keywords

Antifungal Endophytic bacteria IAA Molecular diversity Nodules Roots Vigna radiata.

References

  1. Aswathy A.J., Jasim B., Jyothis M. and Radhakrishnan E.K. (2012). Identification of two strains of Paenibacillus sp. as indole 3 acetic acid-producing rhizome-associated endophytic bacteria from Curcuma longa. 3 Biotech 3:219–224.
  2. Ausubel F.M., Brent R., Kingston R.E., Moore D.D., Seidman J.G., Smith J.A. and Struhl K. (1995). Short Protocols in Molecular Biology. 3rd ed. John Wiley & Sons, New York. Ch 2.4. 
  3. Barros L., Pereira C., and Ferreira I.C.F.R. (2013). Optimized analysis of organic acids in edible mushrooms from Portugal by ultra fast liquid chromatography and photodiode array detection. Food Anal Methods 6: 309–316.
  4. Cappuccino J.C. and Sherman N. (1992). In Microbiology: A Laboratory Manual. New York. 125–179. 
  5. Dalal J. and Kulkarni N. (2013). Antagonistic and plant growth promoting potentials of indigenous endophytic bacteria of soybean (Glycine max (L) Merril). Curr Res Microbiol Biotechnol 1(2): 62-69. 
  6. Duangpaenga A., Phetcharata P., Chanthaphoa S. and Okuda N. (2013). Screening of endophyte bacteria for phosphate solubilization from organic rice. In: Proceeding—Science and Engineering, pp 61–66
  7. Dudeja S.S. and Giri R. (2014). Beneficial properties, colonization, establishment and molecular diversity of endophytic bacteria in legumes and non-legumes. African J Microbiol Res 8 (15): 1562-1572. 
  8. Etesami H., Mirsyed Hosseini H., Alikhani H.A. and Mohammadi L. (2014). Bacterial biosynthesis of 1-aminocyclopropane-1- carboxylate (ACC) deaminase and indole-3-acetic acid (IAA) as endophytic preferential selection traits by rice plant seedlings, J Plant Growth Regul 33: 654–670.
  9. Gagne S., Richard C., Rousseau H. and Antoun H. (1987). Xylem-residing bacteria in Alfalfa roots. Can J Microbiol 33: 996–1000. 
  10. Glick B.R. (2012). Plant Growth-Promoting Bacteria: Mechanisms and Applications. Scientifica 1-15.
  11. Gordon S.A. and Weber R.P. (1951). Calorimetric estimation of indole acetic acid. Plant Physiol 26:192–195
  12. Jha B., Gontia I., and Hartmann A. (2012). The roots of the halophyte Salicornia brachiata are a source of new halotolerant diazotrophic bacteria with plant growth-promoting potential. Plant Soil 356:265–277.
  13. Kumar V., Kumar A., Pandey K.D. and Roy B.K. (2015). Isolation and characterization of bacterial endophytes from the roots of Cassia tora L. Ann Microbiol 65:1391–1399.
  14. Kumar V., Pathak D.V., Dudeja S.S., et al. (2013). Legume nodule endophytes more diverse than endophytes from roots of legumes or non legumes in soils of Haryana, India. J Microbiol Biotechnol Res 3:83–92
  15. Liaqat F. and Eltem R. (2016). Identification and characterization of endophytic bacteria isolated from in vitro cultures of peach and pear rootstocks. 3 Biotech 6:1–8. 
  16. Lorck H. (1948). Production of hydrocyanic acid by bacteria. Plant Physiol 1:142 -146. 
  17. Marques A.P.G.C., Pires C., Moreira H., Rangel A.O.S.S. and Castro P.M.L. (2010). Assessment of the plant growth promotion abilities of six bacterial isolates using Zea mays as indicator plant. Soil Biol Biochem 42:1229–1235
  18. Narula S., Anand R.C., Dudeja S.S., Kumar V. and Pathak D.V. (2013). Molecular diversity of root and nodule endophytic bacteria from field pea (Pisum sativum L.). Legume Res 36(4): 344-350. 
  19. Ngoma L., Esau B. and Babalola O.O. (2013). Isolation and characterization of beneficial indigenous endophytic bacteria for plant growth promoting activity in Molelwane Farm, Mafikeng, South Africa. Afr J Biotechnol 12 (26): 4105-4114. 
  20. Palaniappan P., Chauhan P.S., Saravanan V.S., Anandham R. and Sa T. (2010). Isolation and characterization of plant growth promoting endophytic bacterial isolates from root nodule of Lespedeza sp. Biol Fertil Soils 46: 807-816. 
  21. Pandya M., Rajput M. and Rajkumar S. (2015). Exploring plant growth promoting potential of non rhizobial root nodules endophytes of Vigna radiata. Microbiology 84(1): 80–89.
  22. Passari A.K., Mishra V.K., Leo V.V., Gupta V.K.and Singh B.P. (2016).. Phytohormone production endowed with antagonistic potential and plant growth promoting abilities of culturable endophytic bacteria isolated from Clerodendrum colebrookianum Walp. Microbiol Res 193:57–73.
  23. Pikovskaya R.I. (1948). Phosphate mobilization in soils as related to life processes of some microorganisms. Mikrobiologiya 17: 362–370 
  24. Rajendran G., Sing F., Desai A.J. and Archana G. (2008). Enhanced growth and nodulation of Pigeon Pea by co-inoculation of Bacillus strains with Rhizobium spp. Biosource Technol 99(11): 4544-4550. 
  25. Ramette A., Moënne-Loccoz Y. and Défago G. (2003). Prevalence of fluorescent pseudomonas producing antifungal phloroglucinols and/or hydrogen cyanide in soils naturally suppressive or conducive to tobacco black root rot. FEMS Microbiol Ecol 44:35–43.
  26. Remans T., Thijs S., Truyens S., Weyens N., Schellingen K., Keunen E., … Vangronsveld J. (2012). Understanding the development of roots exposed to contaminants and the potential of plant-associated bacteria for optimization of growth. Ann Bot 110(2): 239–252. http://doi.org/10.1093/aob/mcs105
  27. Rodrigues A.A., Forzani M.V., Soares R.D.S., et al. (2016). Isolation and selection of plant growth-promoting bacteria associated with sugarcane 1. Pesqui Agropecuária Trop 46:149–158.
  28. Rohlf F.J. (1998). NTSYS-pc: Numerical Taxonomy and Multivariate Analysis System. Version 2.01. Setauket, New York, USA: Exeter Software. 
  29. Santoyo G., Moreno-Hagelsieb G., del Carmen Orozco-Mosqueda M. and Glick B.R. (2016). Plant growth-promoting bacterial endophytes. Microbiol Res 183:92–99.
  30. Schwyn B. and Neilands J.B. (1987). Universal chemical assay for detection and determination of siderophore. Anal Biochem 160: 47-56. 
  31. Sturz A.V. Christie B.R., Matheson B.G. and Nowak J. (1997). Biodiversity of endophytic bacteria which colonize red clover nodules, roots, stems and foliage and their influence on host growth. Biol Fertil Soils 25: 13–19.
  32. Suneja P., Piplani S., Dahiya P. and Dudeja S.S. (2016). Molecular characterization of mesorhizobia forming nodules on reverted non nodulating selection and normal cultivar of chickpea. J Agr Sci Tech 18(3): 763-773.
  33. Szilagyi-Zecchin V.J., Ikeda A.C., Hungria M., Adamoski D., Kava- Cordeiro V., Glienke C. and Galli-Terasawa L.V. (2014). Identification and characterization of endophytic bacteria from corn (Zea mays L.) roots with biotechnological potential in agriculture. AMB Express 4:26
  34. Tang Y.M. and Bonner J. (1974). The enzymatic in activation IAA. I. Some characteristics of the enzyme contained in pea seedlings. Arch Biochem 13: 11- 25.
  35. Tariq M., Hameed S., Yasmeen T., Ali A. (2012). Non-rhizobial bacteria for improved nodulation and grain yield of mung bean [Vigna radiata (L.) Wilczek]. Afr J Biotechnol 11:15012–15019.
  36. Tilman D., Cassman K.G., Matson P.A., Naylor R. and Polasky S. (2002). Agricultural sustainability and intensive production practices. Nature 418 (6898): 671–677. 
  37. Voisard C., Keel C., Haas D. and De.fago G. (1989). Cyanide production by Pseudomonas fluorescens helps suppress black root of tobacco under gnotobiotic conditions. EMBO J 8: 351-358.
  38. Weisburg W.G., Barns S.M., Pelletier D.A. and Lane D.J. (1991). 16S DNA ribosomal amplification for phylogenetic study. J Bacteriol 173: 697-703.
  39. Yadav H., Gothwal R.K., Nigam V.K., SinhaRoy S., Ghosh P. (2013). Optimization of culture conditions for phosphate solubilization by a thermotolerant phosphate solubilizing bacterium Brevibacillus sp. BISR HY65 isolated from phosphate mines. Biocatal Agric Biotechnol 2:217-225. 
  40. Young L.S., Hameed A., Peng S.Y., Shan Y.H., Wu S.P. (2013). Endophytic establishment of the soil isolate Burkholderia sp. CC-Al74 enhances growth and P-utilization rate in maize (Zea mays L.). Appl Soil Ecol 66:40–47 

Global Footprints