Loading...

Reproductive parameters as assessment tools for arsenic and chromium induced toxicity in Eudrilus eugeniae

DOI: 10.18805/IJARe.A-5009    | Article Id: A-5009 | Page : 676-680
Citation :- Reproductive parameters as assessment tools for arsenic and chromium induced toxicity in Eudrilus eugeniae.Indian Journal of Agricultural Research.2018.(52):676-680
Shefali, Jyoti Yadav and R.K. Gupta shefaligulliya@gmail.com
Address : Department of Zoology, CCS Haryana Agricultural University, Hisar- 125 004, India.
Submitted Date : 17-03-2018
Accepted Date : 2-10-2018

Abstract

The present study of 28 days was carried out to assess the effect of arsenic and chromium on biomass gain and reproduction parameters (cocoon and hatchling production) of E. eugeniae. The worms were cultured in substrate having different concentrations of arsenic and chromium alongwith control in triplicates. Dose and time dependent decreased in number of adults, cocoon production and hatchling emergence and reduction in growth was observed. In worms exposed to Cr (0.1 ppm), reduction in population (24.66%), body weight (2.44%), cocoon production (47.14%) and hatchling emergence (39.99%) was observed. While As (0.1 ppm) exposure resulted in reduction of adult population (10.66%), body weight (0.24%), cocoon production (37.05%) and hatchling emergence (28.53%) was observed.  Cocoon production was observed to be the most sensitive parameter for heavy metal exposure in all treatments. Chromium was observed to be more detrimental to earthworms when compared with arsenic.

Keywords

Cocoon E. eugeniae Growth Heavy metal Reproduction.

References

  1. Bamidele, J. A., Idowu, A. B., Ademolu, K. O., Akinloye, O. A. and Bamgbola, A. A. (2015). Heavy metal accumulation and biochemical evaluation of earthworms from sawmills in Abeokuta, South-Western Nigeria. International Journal of Tropical Biology, 63 (4): 1213-1221.
  2. Bernard, F., Brulle, F., Dumez, S., Lemiere, S., Platel, A., Nesslany, F., Cuny, D., Deram, A. and Vandenbulcke, F. (2014). Antioxidant responses of annelids, Brassicaceae and Fabaceae to pollutants: a review. Ecotoxicology Environmental Safety, 114: 273-303.
  3. Bilialis, D., Tzortzi, I., Vavoulidou, E., Karkanis, A., Emmanouel, N., Efthimiadou, A., Katsenios, N., Patsiali, S. and Dellaporta, L. (2013). Effects of aluminum and moisture levels on aluminium bioaccumulation and protein content in the earthworm Octodrilus complanatus. Journal of Soil Science and Plant Nutrition, http://dx.doi.org/10.4067/ S0718-95162013005000067. 13:845-854.
  4. Coulibaly, S. S. and ZoroBi, I. A. (2010). Influence of animal wastes on growth and reproduction of the African earthworm species Eudrilus eugeniae (Oligochaeta). European Journal of Soil Biology, 46: 225-229.
  5. Dutta, A. and Dutta, H. (2016). Some insights on the effect of pesticides on earthworms. International Research Journal of Environment Sciences, 5: 61-66.
  6. Ekperusi, A. O. and Aigbodion, I. F. (2015). Bioremediation of heavy metals and petroleum hydrocarbons in diesel contaminated soil with the earthworm: Eudrilus eugeniae. ÿþSpringer Plus, 4: 540.
  7. Garg, P., Satya, S. and Sharma, S. (2009). Effect of heavy metal supplementation on local (Allolobophora parva) and exotic (Eisenia fetida) earthworm species: A comparative study. Journal of Environmental Science and Health, Part A. 44: 1025–1032.
  8. Gomez-Eyles, J. L., Svendsen, L. C., Lister, H. M. and Hodson, M. E. (2009). Measuring and modelling mixture toxicity of imidacloprid and thiacloprid on Caenorhabditis elegans and Eisenia fetida. Ecotoxicology and Environmental Safety, 72: 71-79.
  9. Kaur, K. and Sangha, G.K. (2014). Effects of metal contaminated soils on Eisenia fetida (Savigny) at Ludhiana (Punjab), India. Journal of Applied and Natural Science, 6: 519-523.
  10. Khalil M.A., Abdel-Lateif H.M., Bayoumi B.M., Van Straalen N.M. and Van Gestel C.A.M. (1996). Effects of metals and metal mixtures on survival and cocoon production of the earthworm Aporrectodea caliginosa. Pedobiologia, 40: 548–556.
  11. Khalil, A. M. (2013). Ecotoxicological bioassays of the earthworms Allolobophora caliginosa savigny and Pheretima hawayana rosa treated with arsenate. OnLine Journal of Biological Sciences, 13 (3): 99-105.
  12. Kreutzweiser, D.P., Good, K. P., Chartrand, D. T., Scarr, T. A. and Holmes, S. B. (2008). Effects on litterdwelling earthworms and icrobial decomposition of soil-applied imidacloprid for control of woodboring insects. Pest Management Science, 64: 112-118.
  13. Kumar, S., Sharma, V., Bhoyar, R. V., Bhattacharyya, J. K. and Chakrabarti, T. (2008). Effect of heavy metals on earthworm activities during vermicomposting of municipal solid waste. Water Environment Research, 80: 154-161.
  14. Lapinski, S. and Rosciszewska, M. (2008). The impact of cadmium and mercury contaminationon reproduction and body mass of earthworms. Plant, Soil and Environment, 54 (2): 61–65.
  15. Maboeta, M. S., Reinecke, A. J. and Reinecke, S. A. (1999). The effects of low lead levels on the growth and reproduction of the African earthworm Eudrilus eugeniae (Oligochaeta). Biology and Fertility of Soils, 30: 113–116.
  16. Malecki, M.R., Neuhauser, E.F. and Loehr, R.C. (1982). The effect of metals on growth and reproduction of Eisenia foetida (Oligochaeta, Lumbricidae). Pedobiologia, 24: 129-137.
  17. Maleri, R., Reinecke, S. A., Przybylowicz, J. M. and Reinecke, A. J. (2007). Growth and reproduction of earthworms in ultramafic soils. Archives of Environmental Contamination and Toxicology, 52(3): 363-70.
  18. Miguel, A., Domínguez, C. Z., Hernandez, E. S., Aide, M., Huerta, T., De la Luz, X., et al and (2012). Effect of the heavy metals Cu, Ni, Cd and Zn on the growth and reproduction of epigeic earthworms (E. fetida) during the vermistabili-zation of municipal sewage sludge. Water Air & Soil Pollution, 223(2):915-31.
  19. Neuhauser, E.G., Loehr, R.C., Milligan, D.L. and Malecki, M.R. (1985). Toxicity of metals to the earthworm Eisenia foetida. Biology and Fertility of Soils, 1: 149-152.
  20. Novais, S.C., Gomes, S.I., Gravato, C., Guilhermino, L., De Coen, W., Soares, A. M. and Amorim, M. J. (2011). Reproduction and biochemical responses in Enchytraeusalbidus (Oligochaeta) to zinc or cadmium exposures. Environmental Pollution, 159: 1836-1843.
  21. OECD (Organization for Economic Co-operation and Development) 1984. Test 207: Earthworm, acute toxicity tests [M]. In: Organization for economic co-operation and development (ed.), OECD Guidelines for Testing of Chemicals.
  22. Romero-Freire, A., Martin Peinadoa, F. J. and Van Gestel, C. A. M. (2015). Effect of soil properties on the toxicity of Pb: Assessment of the appropriateness of guideline values. Journal of Hazardous Materials, 289: 46–53.
  23. Rongquan, Z. and Canyang, L.I. (2009). Effect of lead on survival, locomotion and sperm morphology of Asian earthworm, Pheretima guillelmi. Journal of Environmental Sciences, 21: 691-695.
  24. Shefali and Kataria, S. K. (2017). Histological alterations induced due to malathion and cyclophosphamide exposure in mice. Journal of Entomology and Zoology Studies, 5(6): 352-354.
  25. Sivakumar, S. (2015). Effects of metals on earthworm life cycles: a review. Environmental Monitoring and Assessment, 187: 530.
  26. Sivakumar, S., Song, Y. C., Prabha, D. and Subbhuraam, C. V. (2009). Life cycle parameters of the earthworm Eisenia fetida exposed to Cr (III) and Cr (VI) amended organic substrates. Dynamic Soil Dynamic Plant, 3: 147-153.
  27. Sonia, V., Felix, S. and Antony, C. (2016). Comparative study of growth and reproduction of earthworm Eudrilus eugeniae in different organic substrate. International Journal of Applied Sciences, 4: 61-68.
  28. Tchounwou, P. B., Yedjou, C. G., Patlolla, A. K. and Sutton, D. J. (2012). Heavy Metals toxicity and the environment. Molecular, Clinical and Environmental Toxicology, 3: 133-164.
  29. Vandana, S. and Keshav, S. (2015). Toxic effect of herbicide 2, 4-D on the earthworm Eutyphoeus waltoni Michaelsen. ýEnvironmental Process, 2: 251-260.
  30. Verma, A., Ghosh, A., Kumari, M., Dhusia, N. and More, N. (2016). Bioremediation potential of Eisenia fetida and microbes for arsenic contaminated soil and water. International Journal of Biology Research, 4: 15-21.
  31. Vidovic, M., Sadibasic, A., Cupic, S. and Lausevic, M. (2005). Cd and Zn in atmospheric deposit, soil, wheat, and milk. Environmental Research, 97: 26-31.
  32. Wang, Z., Zhaojie, C., Lei, L., Qianchi, M. and Xiaoming, X. (2016). Toxicological and biochemical responses of the earthworm Eisenia fetida exposed to contaminated soil: Effects of arsenic species. Chemosphere, 161-170.
  33. Yadav, J., Singh, D., Sindhu, S., Gera, R. and Shefali. (2017b). Enumeration of gut bacterial population in Eisenia fetida exposed to chlorpyrifos. International Journal of Current Microbiology and Applied Sciences, 6(8): 824-830.
  34. Yadav, J., Gupta, R. K. and Kumar, D. (2017a). Heavy metals toxicity on growth and reproduction of Eisenia fetida. Research in Environment and Life Sciences, 6: 565-568. 

Global Footprints