Evaluating the Influence of Soil and Environmental Parameters in Terms of Crop Suitability using Machine Learning

DOI: 10.18805/IJARe.A-4942    | Article Id: A-4942 | Page : 208-213
Citation :- Evaluating the Influence of Soil and Environmental Parameters in Terms of Crop Suitability using Machine Learning.Indian Journal of Agricultural Research.2022.(56):208-213
Ratnmala Nivrutti Bhimanpallewar, Manda Rama Narasingarao ratnmalab@gmail.com
Address : Department of Computer Science and Engineering, GITAM Institute of Technology, GITAM University, Visakhapatnam-530 045, Andhra Pradesh, India.
Submitted Date : 30-10-2017
Accepted Date : 30-11-2020


Background: The key source of income in India is agriculture, so farming is called as backbone of Indian economy. To satisfy the need of increasing population increase in the crop yield is very important. India country programming framework stated that, the annual soil loss in India is about 5.3 billion tonnes. 
Methods: Majority farmers are small or marginal scale and are dependent on natural resources like soil-quality, rainfall and environmental condition etc. for their yield. Based on experience farmers decide which crop to be adopted. Government is arranging trainings and exhibitions to enhance the skillset of farmers.  
Result: A land which gives poor yield for one crop may produce adequate yield for some other crop/crops. To know the possible suitable crop/crops proposed machine learning model focuses current and potential suitability evaluation for available scenario.


Classification Decision tree Fragmented land Soil nutrients Soil suitability


  1. Agriculture University. (2008). Krishi Darshani 2008. Pune.
  2. Arthapedia, F., Indian, T. (2016). Cropping seasons of India­ Kharif and Rabi.
  3. Bhimanpallewar, R. and Narasinagrao, M.R. (2017). A Machine Learning Approach to Assess Crop Specific Suitability for Small/Marginal Scale Croplands. International Journal of Applied Engineering Research. 12(23): 13966-13973.
  4. Cavayas, F. (2012). Table Des Matières. (1991), doi:10.1515/mamm.1991.55.4.665 Complete information on Jowar (Sorghum Vulgare), n.d.
  5. Copy, T.D. (2001). Chapter 1. FAO Corp. Doc. Repos. doi:10.1017/CBO9781107415324.004.
  6. De La Rosa, D., Mayol, F., Diaz-Pereira, E., Fernandez, M., De La Rosa, D. (2004). A land evaluation decision support system (MicroLEIS DSS) for agricultural soil protection: With special reference to the Mediterranean region. Environ. Model. Softw. 19: 929-942. doi:10.1016/j.envsoft. 2003.10.006.
  7. Directorate of Economics and Statistics, (2013). Directorate of Economics and Statistics of respective State Governments and for All-India-CSO. As on August 14, 2012. 1-32.
  8. Elsheikh, R., Mohamed Shariff, A.R.B., Amiri, F., Ahmad, N.B., Balasundram, S.K., Soom, M.A.M. (2013). Agriculture Land Suitability Evaluator (ALSE): A decision and planning support tool for tropical and subtropical crops. Comput. Electron. Agric. 93: 98-110. doi:10.1016/j.compag.2013.02.003.
  9. FAO. (2016). Water and soil requirements [WWW Document]. URLhttp://www.fao.org/docrep/u3160e/u3160e04.htm.
  10. FAO. (1991). Guidelines: land evaluation for extensive grazing. Soils Bull. 58. Food Agric. Organ. United Nations, Rome, Italy. 158.
  11. FAO. (1985). Guidelines: Land evaluation for irrigated agriculture - FAO Soils Bulletin 55, FAO Soil Bulletin.
  12. FAO. (1976). A framework for land evaluation: soil Bulletin 32. FAO soils Bull. n.32. doi: M-51.
  13. FAO (Food and Agriculture Organization of the United Nations). (1996). Agro-ecological zoning guidelines. FAO Soils bulletin 73.
  14. FAO (Food and Agriculture Organization of the UnitedNations), n.d. Sorghum bicolor.
  15. Flach, P. (2012). Data, Machine Learning: The Art and Science of Algorithms that Make Sense of. doi:10.1145/242224. 242229.
  16. Flat F., n.d. (2011). World Bank assisted Maharashtra Agricultural Competitiveness Project Marketing Strategy Supplement (MSS) District - Ahmednagar Project Implementation Unit (Agriculture), 1–109.
  17. Food and Agriculture Organization of the United Nations (FAO). (1974). Approaches to Land Classification. India Country Programming Framework. 2016.
  18. Kalogirou, S. (2002). Expert systems and GIS: an application of land suitability evaluation., in: Computers, Environment and Urban Systems 26: 89-120.
  19. Malik, G., Tarique, M. (2014). On Machine Learning Techniques for Multi-class Classification 3: 6-9. 
  20. Onyeji, S.C., Fischer, G. and Kamau, W. (1996). Agro-Ecological Assessments for National Planning in Kenya: Database Structure for District Analysis. 
  21. R.N. Bhimanpallewar, Narasingarao, D.M.R. (2015). A Survey of Automated Advisory Systems in. Int. J. Adv. Res. Electr. Electron. Instrum. Eng. 4: 1022-1030.
  22. STCR Indian Government, n.d. __ Districtwise Fertility Index __.
  23. Vintrou, E., Ienco, D., Begue, A., Teisseire, M. (2013). Data mining, a promising tool for large-area cropland mapping. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 6: 2132–2138. doi:10.1109/JSTARS.2013.2238507.
  24. Wu, X., Kumar, V., Ross, Q.J., Ghosh, J., Yang, Q., Motoda, H., McLachlan, G.J., Ng, A., Liu, B., Yu, P.S., Zhou, Z.H., Steinbach, M., Hand, D.J., Steinberg, D. (2008). Top 10 algorithms in data mining, Knowledge and Information Systems. doi:10.1007/s10115-007-0114-2.

Global Footprints