Indian Journal of Agricultural Research

  • Chief EditorT. Mohapatra

  • Print ISSN 0367-8245

  • Online ISSN 0976-058X

  • NAAS Rating 5.20

  • SJR 0.293

Frequency :
Bi-monthly (February, April, June, August, October and December)
Indexing Services :
BIOSIS Preview, ISI Citation Index, Biological Abstracts, Elsevier (Scopus and Embase), AGRICOLA, Google Scholar, CrossRef, CAB Abstracting Journals, Chemical Abstracts, Indian Science Abstracts, EBSCO Indexing Services, Index Copernicus
Indian Journal of Agricultural Research, volume 54 issue 2 (april 2020) : 205-210

Improvement of Soil Quality through Minimum Tillage for Sen Cropping Pattern in Indonesia

Natasha B.C. Abolla, Junun Sartohadi, Sri Nuryani H. Utami, Tony Basuki
Cite article:- Abolla B.C. Natasha, Sartohadi Junun, Utami H. Nuryani Sri, Basuki Tony (2019). Improvement of Soil Quality through Minimum Tillage for Sen Cropping Pattern in Indonesia. Indian Journal of Agricultural Research. 54(2): 205-210. doi: 10.18805/IJARe.A-482.
There have not been sufficient studies on Sen cropping patterns, a system of planting several food crops in one planting hole. A study to examine the effectiveness of minimum tillage on the Sen cropping pattern, concerning the soil quality improvements and their effects on crop productivity, was conducted on a field plot. The tillage treatment consisted of minimum planting with planting hole sizes of 20x20x20 cm, 30x30x20 cm and 40x40x20 cm, including one control planting hole. A total of 36 planting holes were tested. Improvement of soil physical-chemical properties was measured by comparing the measurements results at initial soil conditions and at 14 days after planting. The results showed that the 20x20x20 cm hole treatment was able to improve the physical-chemical quality of the soil with the best value compared to other treatments. The optimum improvement of soil quality to increase plant productivity was achieved at 40x40x20 cm hole treatment.

  1. Adeleke, R., Nwangburuka, C. and Oboiriend, B. (2016). Origins, roles and fate of organic acids in soils: A review. South African Journal of Botany. 108: 393-406. DOI: 10.1016/j.sajb.2016.09.002.

  2. Angelova, V.R., Akova, V.I., Artinova, N.S. and Ivanov, K.I. (2013). The effect of organic amendments on soil chemical characteristics. Bulgarian Journal of Agricultural Science. 19(5): 958-971. 

  3. Balai Pengkajian Tanah. (2009). Petunjuk teknis analisis kimia tanah, tanaman, air dan pupuk. Balai Penelitian Tanah, Badan Penelitian dan Pengembangan Pertanian, Bogor.

  4. Basuki. T. and deRosari, B. (2017). Pemanfaatan kearifan lokal dan teknologi pertanian mendukung pembangunan pertanian wilayah. In: Pembangunan pertanian wilayah berbasis kearifan lokal dan kemitraan. [Pasandaran E., Heriawan, M.S.R., Yudfy, M.P (Eds)]. IAARD Press, Jakarta. pp.63-88. ISBN: 978-602-344-200-3.

  5. Bauer, A. (1974). Influence of soil organic matter on bulk density and available water capacity of soils North Dakota agricultural experimental station. Farm Research. 31:44-52.

  6. Cercioglu, M., Okur, B., Delibacak, S. and Ongun, A.R. (2012). Effects of tobacco waste and farmyard manure on soil properties and yield of lettuce (Lactuca sativa L. var. capitata). Communications in Soil Science and Plant Analysis. 43: 875-886. DOI: 10.1080/00103624.2012.653023.

  7. Faqih, A., Jadmiko, D.J. and Geru, A.S. (2015). Keragaman dan perubahan iklim Nusa Tenggara Timur. UNDP-SPARC Project. Kementerian Lingkungan Hidup dan Kehutanan, Jakarta. 

  8. Gosavi, A.B., Potdar, D.S., Sonawane, P.D., Shirpurkar, G.N. and Rasal, P.N. (2009). Organic farming in soybean-wheat cropping sequence. Agricultural Science Digest. 29(4): 267-270.

  9. Hopkins, B. and Ellsworth, J. (2005). Phosphorus availability with alkaline/calcareous soil. Western Nutrient Management Conference. 6: 88-93.

  10. Kidinda, L.K., Kasu-Bandi, B.T., Mukalay, J.B., Kabemba, M.K., Ntata, C.N., Ntale, T.M., Tamina, D.T. and Kimuni. L.N. (2015). Impact of chicken manure integration with mineral fertilizer on soil nutriments balance and maize (Zea mays) yield: a case study on degraded soil of Lubumbashi (DR Congo). American Journal of Plant Nutrition and Fertilization Technology. 5: 71-78. DOI: 10.3923/ajpnft.2015.71.78.

  11. Kumar, D., Bansal, M.L. and Phogat, V.K. (2009). Compactability in relation to texture and organic matter content of alluvial soils. Indian Journal of Agricultural Research. 43(3): 180-186.

  12. Kumar, S., Srivastava, A. and Gupta, A. (2015). Effect of organic amendments on availability of different chemical fractions of phosphorus. Indian Journal of Agricultural Research. 35(2): 83-88. DOI: 10.5958/0976-0547.2015.00033.6.

  13. Kumar, R., Rawat, K.S., Singh, J. and Rai, A. (2013). Soil aggregation dynamics and carbon sequestration. Journal of Applied and Natural Science. 5(1): 250-267. DOI: 10.31018/jans.v5i1.314.

  14. Levis, L.R., Sukesi, K., Sugiyanto. and Yuliati, Y. (2017). Farmers behavior regarding food security by practicing the “Salome” farming system as local wisdom in West Timor, East Nusa Tenggara Province, Indonesia. Tropical and Subtropical Agroecosystem. 20(2): 231-236. ISSN: 1870-0462.

  15. Mando, A. and Miedema, R. (1997). Termite-induced change in soil structure after mulching degraded (crusted) soil in Sahel. Applied Soil Ecology. 6: 241–249. DOI: 10.1016/S0929-1393(97)00012-7.

  16. Neo, F.X. and Ceunfin, S. (2018). Pengaruh model tumpangsari dan pengaturan jarak tanam kacang nasi (Vigna angularis L.) Kultivar lokal terhadap pertumbuhan dan hasil tanaman jagung (Zea mays L.). Savana Cendana. 3(1): 14-17. DOI: 10.32938/    sc.v3i01.135.

  17. Turner, R.C. (1985). A theoretical treatment of the pH of calcareouse soils. Soil Science. 68:32-34.

  18. USDA-NRCS. (2014). Soil bulk density/moisture/aeration – soil quality kit.    nrcs142p2_053260.pdf 

  19. Utami, S.R., Rohmawati, H., Kumalontang, W.J.N. and Prijono, S. (2017). Organic matter and phosphorus fertilizer application to sustain maize growth under water stress condition in calcareous soil. 2nd International Conference on Sustainable Agriculture and Food Security: A comprehensive Approach, KnE Life Science. 216-227. DOI: 10.18502/kls.v2i6.1043.

  20. Wadu, M.C.W., Michaelis, K.V., Kroeker, S. and Akinremi, O.O. (2017). Exchangeable calcium/magnesium ratio affects phosphorus behavior in calcareous soils. Soil Science Society of America Journal. 77: 2004-2013. DOI: 10.2136/sssaj2012.0102.

  21. Vincent, A. and Davies, S.J. (2002). Effects of nutrient addition, mulching and planting-hole size on early performance of Dryobalanops aromatica and Shorea parvifolia planted in secondary forest in Sarawak, Malaysia. Forest Ecology and Management. 180: 261-271. DOI: 10.1016/s0378-1127(02)00562-5.

  22. Warren, J. and Taylor, R. (2017). Managing soil compaction. Oklahoma Coorperative Extension Service, Oklahoma. 

  23. Wibowo, H., Warna, R.N., Wulandari, P., Prakoso, T., Prasetyo, D., Airlangga, T.A., Purwanto, B.H., et al (2019). Identification the availability of P in land planted with corn on volcanic, karst and acid soils in Indonesia. The UGM Annual Scientific Conference Life Science 2016, KnE Life Science. 179-188. DOI: 10.18502/kls.v4i11.3864.

  24. Zhang, Y., Zhang, S., Wang, R., Cai, J., Zhang, Y., Li, H., Huang S. and Jiang, Y. (2016). Impacts of fertilization practices on pH and the pH buffering capacity of calcareous soil. Soil Science and Plant Nutrition. 62: 432-439. DOI: 10.1080/00380768. 2016.1226685. 

Editorial Board

View all (0)