Germination Capacity of Annona deceptrix (Westra) H. Rainer (Annonaceae) an Endemic and Endangered Species in Manabí, Ecuador

DOI: 10.18805/IJARe.A-481    | Article Id: A-481 | Page : 329-335
Citation :- Germination Capacity of Annona deceptrix (Westra) H. Rainer (Annonaceae) an Endemic and Endangered Species in Manabí, Ecuador.Indian Journal Of Agricultural Research.2020.(54):329-335
José Pico-Mendoza, Miryan Pinoargote, Luis Madrid, Juan Flor, Janner Álava, Gema Sancán, Carrasco Basilio, Ricardo Limongi, Geover Peña, Karla Quiroz jwpico@utm.edu.ec
Address : Carrera de Agronomía, Facultad de Ingeniería Agronómica, Universidad Técnica de Manabí. Km. 13.5 vía Portoviejo-Santa Ana. Manabí, Ecuador. 
Submitted Date : 3-09-2019
Accepted Date : 4-03-2020

Abstract

Annona deceptrix is an endemic and endangered tree from Ecuador according to the IUCN Red List of Endangered Species™. Its endangered status has been related with anthropogenic activities and some intrinsic characteristics of this species such as a low germination capacity of its seeds under natural conditions which is a serious limitation to obtain plants to establish conservation and breeding strategies. The objective of this study was to determine the seed germination capacity of A. deceptrix under different conditions and pre-germination treatments as a decisive factor in the survival of the species in ecosystems. The six pre-germination treatments were seed mechanical scarification (fine sandpaper), seed imbibitions in gibberellic acid solutions with three different concentrations (600, 700, 800 ppm) for 24 hours, imbibition of seeds in distilled water for 48 hours and direct sowing (control). For each treatment was sown twenty seeds under greenhouse conditions and germination chamber. The variables evaluated were: total number of germinated seeds, germination capacity, maximum germination value and germination energy. Mechanical scarification was the best treatment with 100 % germinated seed and showed to be significantly different than the other treatment. In this regards, the rest of the treatment the germination ranged between 35 % to 55 % and did not show statistical differences each other. In conclusion, the seeds of A. deceptrix have a low germination capacity in natural conditions and then they need a pre-germination process such as mechanical-scarification to guarantees for their performance in the ecosystems.

Keywords

Annona deceptrix Endangered Endemic plant Pre-germination treatments Scarification Seed germination

References

  1. Adeniji, I. T., Adio, A. F., Iroko, O. A., Kareem, A. A., Jegede, et al. (2014). Pre-Treatment of Seeds of Annona Squamosa (Sugar Apple) A Non Timber Forest Product. Scientific Research in Plant Science. 2(3): 50–52. https://doi.org/    10.12691/plant-2-3-1.
  2. Balzarini, M. G., Gonzalez, L., Tablada, M., Casanoves, F., Rienzo, J. A. Di and C.W. Robledo. (2008). Manual del Ususario. Editorial Brujas, Córdoba, Argentina. Editorial Brujas, Córdoba, Argentina.
  3. Baskin, C. C., and Baskin, J. M. (2005). Seed dormancy in trees of climax tropical vegetation types. Tropical Ecology. 46(1): 17–28.
  4. Baskin, J. M., and Baskin, C. C. (2004). A classification system for seed dormancy. Seed Sciencie Research. 14: 1–16. https://doi.org/10.1079/SSR2003150.
  5. Carvalho, D. U. de, Cruz, M. A. da, Osipi, E. A. F., Cossa, C. A., Colombo, R. C., and Sorace, M. A. F. (2018). Plant growth regulators on atemoya seeds germination. Nucleus. 15(2): 457–462. https://doi.org/10.3738/1982.2278.2832.
  6. Collette, J. C., and Ooi, M. K. J. (2017). Germination ecology of the endangered species Asterolasia buxifolia (Rutaceae): Smoke response depends on season and light. Australian Journal of Botany. 65(3): 283–291. https://doi.org/10. 1071/BT17025.
  7. Da Silva, E. A. A., De Melo, D. L. B., Davide, A. C., De Bode, N., Abreu, G. B., Faria, J. M. R., and Hilhorst, H. W. M. (2007). Germination ecophysiology of Annona crassiflora seeds. Annals of Botany. 99(5): 823–830. https://doi.org/10.1093/aob/mcm016.
  8. Dada, C., Kayode, J., Arowosedge, S., and Ayeni, M. (2019). Effect of scarification on breaking seed dormancy and germination enhancement in Annona muricata L. (Magnoliales: Annonaceae). World Scientific News. 126(April): 136-147.
  9. De la Torre, L. (2008). Enciclopedia de las plantas útiles del Ecuador. Herbario QCA de la Escuela de Ciencias Biológicas de la Pontificia Universidad Católica del Ecuador. Retrieved from http://repositorio.educacionsuperior.gob.ec/handle/    28000/3705.
  10. De Smet, S., Damme, V. P., X., S., and Romero, J. (1999). Seed structure and germination of cherimoya. In First International Symposium on Cherimoya (pp. 269–278).
  11. George, A. P., and Nissen, R. J. (2003). Annonaceous fruits. In Encyclopedia of Food Sciences and Nutrition (pp. 239–    243). Academic Press.
  12. Godefroid, S., van de Vyver, A., and Vanderborght, T. (2010). Germination capacity and viability of threatened species collections in seed banks. Biodiversity and Conservation. 19(5): 1365–1383. https://doi.org/10.1007/s10531-009-9767-3.
  13. González-Esquinca, A. R., De-La-Cruz-Chacón, I., and Domínguez-Gutú, L. M. (2015). Dormancy and germination of Annona macroprophyllata (Annonaceae): The importance of the micropylar plug and seed position in the fruits. Botanical Sciences. 93(3): 509-515. https://doi.org/10.17129/botsci.166.
  14. Gowda, B., Naik, A. K., Rakesh, Mathad, C., Ganiger, B. S., Lokesh, G. Y.,. Rekha. (2018). An improved method of seed germination testing in Kabuli chickpea. Indian Journal of Agricultural Research. 52(4): 456–459. https://doi.org/    10.18805/IJARe-4879.
  15. Hasan, M. A., Al-Taweel, S. K., Hamza, J. H., and Jewad, W. M. (2018). Effect of seed weight on stem anatomical characters in white lupine (Lupinus albus L.) cultivars. Indian Journal of Animal Research. 52(6): 666–670. https://doi.org/10. 18805/IJARe.A-352.
  16. Hernández-Fuentes, L. M., Bautista Martínez, N., Carrilo-Sánchez, J. L., Sánchez Arroyo, H., Urías-López, M. A., and Salas Araiza, M. D. (2017). Control del barrenador de las semillas, bephratelloides cubensis ashmead (hymenoptera: eurytomidae) en guanábana, annona muricata l. (annonales: annonaceae). Acta Zoológica Mexicana (N.S.). 24(1): 199–206. https://doi.org/10.21829/azm.2008.241631.
  17. ISTA. (1999). International Rules for Seed Testing: Seed Science and Technology. International Seed Testing Association, Zurich, Switzerland, pp: 24.
  18. ISTA. (2004). International rules for seed testing. Basserdorf, Switzerland, International Seed Testing Association Zurich.
  19. Jain, S., Sharma, T. R., Lal, N., Rangare, N. R., and Kumar, B. (2017). Effect of GA 3 and Growing Media on Seedling Vigour and Physiological Parameter of Custard Apple (Annona squamosa L.). International Journal of Chemical Studies. 6(8): 606–615.
  20. Khoshbakht, K., and Hammer, K. (2008). Species Richness in Relation to the Presence of Crop Plants in. Journal of Agriculture and Rural Development in the Tropics and Subtropic. 109(2): 181–190.
  21. Kour, S., Bakshi, P., Sharma, A., Wali, V. K., Jasrotia, A., and Kumari, S. (2018). Strategies on Conservation, Improvement and Utilization of Underutilized Fruit Crops. International Journal of Current Microbiology and Applied Sciences.7(03): 638-    650. https://doi.org/10.20546/ijcmas.2018.703.075.
  22. Kudikala, H., Ellendula, R., Nazrin, S., Sirikonda, A., Mood, K., and Allini, V. R. (2018). Effect of pre-treatment methods on in vitro seed germination of bullock’s heart (Annona reticulata L.). Asian Journal of Plant Sciences. 17(3): 142–    149. https://doi.org/10.3923/AJPS.2018.142.149.
  23. Ledo, A. D. S. and Cabanelas, C. I. L. (1997). Superação de dormência de sementes de gra viola (Annona muricata L.) I. Rev Bras Fruticultura. 19(3): 397–400.
  24. León Yánez, S., Valencia, R., Pitman, N., Endara, L., Ulloa-Ulloa, C., and Navarrete, H. (2011). Libro Rojo de las Plantas Endémicas del Ecuador.
  25. Lobo, M., Delgado, Ó., Cartagena, J. R., Fernández, E., and Medina, I. (2007). Categorización de la germinación y la latencia en semillas de chirimoya (Annona cherimola L.) y guanábana (Annona muricata L.), como apoyo a programas de conservación de germoplasma Categorization of germination and dormancy of cherimoya (Annona cher. Agronomía Colombiana. 25(2): 231–244.
  26. Lora, J., Larranaga, N., and Hormaza, J. I. (2018). Genetics and Breeding of Fruit Crops in the Annonaceae Family: Annona spp. and Asimina spp. In J. M. Al-Khayri, S. M. Jain and D. V Johnson (Eds.), Advances in Plant Breeding Strategies: Fruits (pp. 651–672). Cham: Springer International Publishing. https://doi.org/10.1007/978-3-319-91944-7_16.
  27. Maas, P. J. M. (2009). Neotropical Annonaceae. In: Milliken, W., Klitgård, B. and Baracat, A. (2009 onwards), Neotropikey - Interactive key and information resources for flowering plants of the Neotropics. Retrieved from http://www. kew. org/science/tropamerica/neotropikey/familiesAnnonaceae.htm.
  28. Marbaniang, E. J., Venugopal, N., Verma, S., Raina, R., Khajuria, A., and Gautam, K. (2018). Floral biology and embryological studies are important for conservation of threatened plants having reproductive bottlenecks/ : a case study of Illicium griffithii Hook . f . and Thomson. Current Science. 114(3): 576–587. https://doi.org/10.18520/cs/v114/i03/    576-587.
  29. Martínez-Maldonado, F. E., Miranda-Lasprilla, D., and Magnitskiy, S. (2013). Sugar apple (Annona squamosa L., Annonaceae) seed germination: Morphological and anatomical changes [Germinación de semillas de anón (Annona squamosa L., Annonaceae): Cambios morfológicos y anatómicos]. Agronomia Colombiana. 31(2): 176–183. Retrieved from https://www.scopus.com/inward/record.uri?eid=2-s2.0-84884404278andpartnerID=40andmd5=d8c84b3fd3cc6651d17bfc008c7fb268.
  30. Martínez M, F. E., Miranda L, D., and Magnitskiy, S. (2016). Sugar apple (Annona squamosa L.) seed germination affected by the application of gibberellins. Agronomía Colombiana. 34(1): 17–24. https://doi.org/10.15446/agron.colomb.v34 n1.53074.
  31. Muriel, P., and Pitman, N. (2003). Annona deceptrix. The IUCN Red List of Threatened Species 2003: e.T42828A1075 6913. Retrieved from http://dx.doi.org/10.2305/IUCN. UK.2003.RLTS.T42828A10756913.en.
  32. Negrón-Ortiz, V. (2018). Breeding System, Seed Germination and Recruitment of A Threatened, Southeastern U.S. Endemic, Ribes echinellum (Grossulariaceae). Rhodora. 120(982): 99–116. https://doi.org/10.3119/17-25.
  33. Padilla, I. M. G., and Encina, C. L. (2003). In vitro germination of cherimoya (Annona cherimola Mill.) seeds. Scientia Horticulturae. 97(3–4): 219–227. https://doi.org/10.1016/S0304-4238(02)00160-7.
  34. Patel, P., Pathak, J., and Suthar, R. (2019). Effect of Various Physicochemical Treatments on Seed Germination of Annona squamosa L. Asian Journal of Applied Sciences. 12(3): 128–132. https://doi.org/10.3923/ajaps.2019. 128.132.
  35. Rabelo, S. V., Quintans, J. d. S. S., Costa, E. V., Almeida, J. R. G. S., and Quintans Júnior, L. J. (2016). Annona Species (Annonaceae) Oils. In Essential Oils in Food Preservation, Flavor and Safety (pp. 221–229). Academic Press.
  36. Sakthivel, T., Senthil Kumar, R., and Bonath, S. (2019). Management and Conservation of Underutilized Fruits. In P. E. Rajasekharan and V. R. Rao (Eds.), Conservation and Utilization of Horticultural Genetic Resources (pp. 409–424). Singapore: Springer Singapore. https://doi.org/10.1007/978-981-13-3669-0_13.
  37. Stenzel, N. M. C., Murata, I. M., and Neves, C. S. V. J. (2005). Superação da dormência em sementes de atemóia e fruta-do-conde. Revista Brasileira de Fruticultura. 25(2): 305–308. https:/    /doi.org/10.1590/s0100-29452003000200031.
  38. Tetteh, R., Aboagye, L. M., Darko, R., and Osafo, E. A. (2019). Physiological seed quality in relation to maturity stage in two pepper (Capsicum annuum L.) cultivars. Agricultural Reviews. 53(of): 604–608. https://doi.org/10.18805/ijare. a-419. 

Global Footprints