Indian Journal of Agricultural Research

  • Chief EditorT. Mohapatra

  • Print ISSN 0367-8245

  • Online ISSN 0976-058X

  • NAAS Rating 5.60

  • SJR 0.293

Frequency :
Bi-monthly (February, April, June, August, October and December)
Indexing Services :
BIOSIS Preview, ISI Citation Index, Biological Abstracts, Elsevier (Scopus and Embase), AGRICOLA, Google Scholar, CrossRef, CAB Abstracting Journals, Chemical Abstracts, Indian Science Abstracts, EBSCO Indexing Services, Index Copernicus
Indian Journal of Agricultural Research, volume 52 issue 2 (april 2018) : 119-125

Evaluation of Recombinant Inbreed Lines (RIL) population of upland rice under stress and non stress conditions for grain yield and drought tolerance

Manish Kumar, A. Kumar, N.P. Mandal
1Department of Botany, Vinoba Bhave University, Hazaribag-825 301, Jharkhand, India.
Cite article:- Kumar Manish, Kumar A., Mandal N.P. (2018). Evaluation of Recombinant Inbreed Lines (RIL) population of upland rice under stress and non stress conditions for grain yield and drought tolerance. Indian Journal of Agricultural Research. 52(2): 119-125. doi: 10.18805/IJARe.A-4729.
Drought is the major abiotic factor that limit rice productivity in rainfed and upland occuring ecosystems; worldwide, it reduces yield by 15–50 % depending on the stress impact on crop growth period. Stress period more than 7-14 days   reduction is observed in all the parameters i.e. average plant height 12.9-29.5%, panicle number 41.6-65.4%, yield of inbred lines 17.34 -86.04% followed by an average of overall 44.86% over non stress condition. Similarly it was found that biomass, harvest index, filled grain per panicle, total grain per panicle, fertility % and so on were reduced under stress condition in comparison to congenial condition.Variation in drought susceptibility index (DSI) and drought resistant index (DRI) in the inbred lines ranges 1.081 to 2.116 and 0.04 to 2.80 respectively. Significant variations observed in the population for different agronomical traits and derived indices would facilitate selection of recombinant inbred lines (RILs) with drought tolerance and high yielding.
  1. Atlin,G., Venuprasad, R., Bernier, J., Zhao, D., Virk, P and Kumar, A.(2008). Rice germplasm development for drought-prone environments: Progress made in breeding and genetic analysis at the IRRI. Drought frontiers in rice: Crop improvement for increased rainfed production. World Scientific Publishing, Singapore, Singapore, and IRRI, Los Baños, Philippines, 35-59. 
  2. Babu, R. C., Nguyen, B. D., Chamarerk, V., Shanmugasundaram, P., Chezhian, P., Jeyaprakash, P., Ganesh, S. K., Palchamy, A., Sadasivam, S., Sarkarung, S., Wade, L. J. and Nguyen, H. T. (2003). Genetic analysis of drought resistance in rice by molecular markers: Association between secondary traits and field performance. Crop Science, 43:1457–1469. 
  3. Bidinger, F. R., Mahalakshmi, Y., Talukdar, B.S. and Alagarswamy, G. (1982). Improvement of drought resistance in pearl millet. In IRRI (Ed) Drought Resistance in Crops with Emphasis on Rice. IRRI, Los Banos, Laguna Philippines, pp. 357-375.
  4. Bimpong, I. K., R. Serraj, J. H., Chin, J., Ramos, E. M. T., Mendoza, J. E., Hernandez, M. S. and Brar, D. S.(2011). Identification of QTLs for drought-related traits in alien introgression lines derived from crosses of rice (Oryza sativa cv. IR64) × O. glaberrima under Lowland Moisture Stress. J. of Plant Bio, 54: 237-250. 
  5. Cooper, M. (1999). Concepts and strategies for plant adaptation research in rainfed lowland rice. Field Crop Res,64: 13-34. 
  6. Courtois, B. and Lafitte, H. R. (2002). Interpreting cultivar environment interactions for yield in upland rice assigning value to drought-adaptive traits. Crop Sci,42: 1409–1420. 
  7. Cruz, R.T. and O’Toole, J. C. (1984). Dryland rice response to an irrigation gradient at flowering stage. Agron Journal,76: 178-183. 
  8. Esbroeck, V. G. A., Bowman, D. T., May, O. L. and Calhoun, D. S. (1999). Genetic similarity indices for ancestral cotton cultivars and their impact on genetic diversity estimates of modern cultivars. Crop Science, 39: 323-328. 
  9. FAO (Food and Agriculture Organization) Rome. (2011).
  10. Fischer, R. A. and Maurer, R. (1978). Drought resistance in spring wheat cultivars. I. Grain yield response. Aust. J. Agric. Res, 29: 897–907.
  11. Fukai, S. and Cooper, M. (1995). Development of drought resistant cultivars using physiomorphological traits in rice. Field Crop Res, 40: 67-86. 
  12. Fukai, S. (1999). Phenology in rainfed lowland rice. Field Crop Res. 64(1-2): 51-60. 
  13. Garrity, D. and O’Toole, J. (1994). Screening rice for drought resistance at the reproductive phase. Field Crops Res, 39: 99-110. 
  14. Grzesiak, M. T., Marcin´ska, I., Janowiak, F., Rzepka, A., Hura, T. (2012). The relationship between seedling growth and grain yield under drought conditions in maize and triticale genotypes. Acta Physiol Plantarum, doi:10.1007/s11738-012-0973-3.
  15. Hirayama, M., Wada, Y. and Nemoto, H. (2006). Estimation of drought tolerance based on leaf temperature in upland rice breeding. Breed Sci, 56: 47–54. 
  16. Jeong, J. S., Kim, Y. S., Baek, K. H., Jung, H., Ha, S. H., Do Choi, Y., Kim, M., Reuzeau, C. and Kim, J. K. (2010). Root-specific expression of OsNAC10 improves drought tolerance and grain yield in rice under field drought conditions. Plant Physiol, 153: 185-97. 
  17. Kamoshita, A., Rodriguez, R., Yamauchi, A. and Wade, L. J. (2004). Genotypic variation in response of rainfed-lowland rice to prolonged drought and rewatering. Plant Prod Sci, 7: 406-420. 
  18. Kumar, R. and Kujur, R. (2003). Role of secondary traits in improving the drought tolerance during flowering stage in rice. Indian J of Plant Physio, 8: 236-240. 
  19. Lafitte, H. R., Price, A. H. and Courtois, B. (2004). Yield response to water deficit in an upland rice mapping population: Associations among traits and genetic markers. Theor. Appl. Genet, 109: 1237–1246. 
  20. Li, X., Yan, W., Agrama, H., Jia, L., Jackson, A., Moldenhauer, K., Yeater, K., McClung, A. and Wu, D. (2012). Unraveling the complex trait of harvest index with association mapping in rice (Oryza sativa L.), PLoS ONE.7: e29350. 
  21. Mirza, M. J., Faiz, F. A. and Majid, A. (1992). Correlation studies and path analysis of plant height, yield and yield components in rice (Oryza sativa L.). Sarhad J Agril. 8(6): 647-653. 
  22. O’toole, J. and Chang, T. (1979). Drought resistance in cereals. Rice: A case study. Stress physiol. in crop plants, 64: 628.
  23. Pandey, S. and Bhandari, H. (2009). Drought: coping mechanism and poverty, Insights from rainfed rice farming in Asia and the pacific division. International Fund for Agricultural Development (IFAD), pp. 5-43. 
  24. Pantuwan, G., Fukai, S., Cooper, M., Rajatasereekul, S. and O’Toole, J. C. (2002a). Yield response of rice (Oryza sativa L.) genotypes to different types of drought under rainfed lowlands. 2. Selection of drought resistant genotypes. Field Crop Research, 73: 169–180. 
  25. Price, A, H., Cairns, J. E., Horton, P., Jones, H. G. and Griffiths, H. (2002b). Linking drought-resistance in upland rice using a QTL approach: progress and new opportunities to integrate stomatal and mesophyll responses. Journal Expt Botany, 53: 989-1004. 
  26. Sellamuthu, R., Liu, G, F., Ranganathan, C. B. and Serraj, R. (2011). Genetic analysis and validation of quantitative trait loci associated with reproductive-growth traits and grain yield under drought stress in a doubled haploid line population of rice (Oryza sativa L.). Field Crops Research, 124: 46-58. 
  27. Singh, S. and Singh, T. N. (1999). Morphological, chemical and environmental factors affecting leaf rolling in rice during water stress. Indian J. Plant Physiology, 5: 136-141. 
  28. Srividhya, A., Vemireddy, L. R., Sridhar, S., Jayaprada, M., Ramanarao, P. V., Hariprasad, A. S., Reddy, H. K., Anuradha, G. and Siddiq, E.(2011).Molecular Mapping of QTLs for yield and its components under two water supply conditions in rice (Oryza sativa L.). J. Crop Sci. Biotechnology, 14 (1): 45-56.
  29. Venuprasad, R., Lafitte, H. R. and Atlin, G. N.(2007). Response to direct selection for grain yield under drought stress in rice. Crop Science, 47: 285. 
  30. Vijayalakshmi, C. and Nagarajan, M. (1994). Effect of rooting pattern on rice productivity under different water regimes. J. Agronomy and Crop Science, 173: 113-117.
  31. Wang, W. S., Pan, Y. J., Zhao, X. Q., Dwivedi, D., Zhu, L. H., Ali, J., Fu, B. Y. and. Li, Z. K. (2011). Drought-induced site-specific DNA methylation and its association with drought tolerance in rice (Oryza sativa L.). J Exp Bot. 62: 1951-60. 
  32. Xiang, J. J., Zhang, G. H., Qian, Q. and Xue, H. W. (2012). SEMI-ROLLED LEAF1 Encodes a Putative Glycosylphosphatidylinositol-    Anchored Protein and Modulates Rice Leaf Rolling by Regulating the Formation of Bulliform Cells. Plant Physiol. 159: 1488-500. 
  33. Yang, S., Logan, J. and Coffey, D. L.(1995). Mathematical formulae for calculating the base temperature for growing degree days. Agric. Water Management, 74: 61–74.
  34. Zhang, L. S., Yu, K., Zuo, Luo, L. and Tang, K. (2012). Identification of gene modules associated with drought response in rice by network-based analysis. PLoS ONE, 7: e33748. 
  35. Zhao, K., Eizenga, C. W., Wright, G. C., Ali, M. H., Price, M. L., Norton, A. H., Islam, G. J., et al., (2011). Genome-wide association mapping reveals a rich genetic architecture of complex traits in Oryza sativa. Nat. Communication, 2:467. 

Editorial Board

View all (0)