Indian Journal of Agricultural Research

  • Chief EditorV. Geethalakshmi

  • Print ISSN 0367-8245

  • Online ISSN 0976-058X

  • NAAS Rating 5.60

  • SJR 0.293

Frequency :
Bi-monthly (February, April, June, August, October and December)
Indexing Services :
BIOSIS Preview, ISI Citation Index, Biological Abstracts, Elsevier (Scopus and Embase), AGRICOLA, Google Scholar, CrossRef, CAB Abstracting Journals, Chemical Abstracts, Indian Science Abstracts, EBSCO Indexing Services, Index Copernicus
Indian Journal of Agricultural Research, volume 51 issue 3 (june 2017) : 287-291

Grain yield response of drought stressed wheat to foliar application of glycine betaine

Neha Gupta*, Sanjeev Kaur Thind
1<p>Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana-141 004, Punjab, India.</p>
Cite article:- Gupta* Neha, Thind Kaur Sanjeev (2017). Grain yield response of drought stressed wheat to foliar application of glycine betaine . Indian Journal of Agricultural Research. 51(3): 287-291. doi: 10.18805/ijare.v51i03.7920.

A field experiment was conducted to investigate influence of exogenous application of glycine betaine (GB) on performance of wheat under prolonged drought conditions. A set of 19 wheat genotypes differing in stress sensitivity, were sprayed with 100mM GB at maximum tillering and anthesis stage. GB treatment significantly declined the phenological pace under drought stress by increasing days to anthesis. Foliar applied GB improved grains/ spike and thousand grain weight of selected wheat genotypes over stressed ones. The genotype specific response to GB application suggested some threshold optimum level to be necessary for yield improvement under drought stress in susceptible genotypes as compared with tolerant ones. In overall, GB alleviated negative effects of drought stress by a rise in harvest index of most genotypes suggesting its role in assimilate translocation.


  1. Asch, F.,. Dingkuhnb., M,  Sow., A. and Audebert. A. (2005). Drought induced changes in rooting patterns and assimilate partitioning         between root and shoot in upland rice. Field Crop Res. 3: 223-236.

  2. Brisson, N. and Casals. M.L.  (2005). Leaf dynamics and crop water status throughout the growing cycle of durum wheat crops grown         in two contrasted water budget conditions. Agron Sustain Dev. 25: 151-158.

  3. Cha-um, S., Samphumphuang., T. and Kirdmanee. C. (2013). Glycinebetaine alleviates water deficit stress in indica rice using proline         accumulation, photosynthetic efficiencies, growth performances and yield attributes. Aust J Crop Sci. 7(2): 213-218

  4. Diaz-Zorita, M., Fernandez-Canigia., M.V.  and Grosso. GA. (2001). Applications of foliar fertilizers containing glycinebetaine improve         wheat yields. J Agron Crop Sci. 186: 209-215.

  5. FAOSTAT. (2014). Food and Agriculture Organization of the United Nations (FAO), Statistical Databases, last updated 23 Oct 2014         (http:/faostat3.fao.org).

  6. Fleury, D., Jefferies., S., Kuchel., H. and Langridge., P. (2010). Genetic and genomic tools to improve drought tolerance in wheat. J         Exp Bot. 61: 3211-3222.

  7. Gupta, N. and Thind. S.K. (2015). Improving photosynthetic performance of bread wheat under field drought stress by         foliar applied glycine betaine. J Agric Sci Technol. 17: 75-86.

  8. Gupta, N., Thind., S.K.  and Bains., N.S.  (2013). Glycine betaine application modifies biochemical attributes of osmotic         adjustment in drought-stressed wheat. Plant Growth Regul. 72: 221-228.

  9. Hasanuzzaman, M., Alam, M.M.  Rahman., A., Hasanuzzaman., M., Nahar. K. and Fujita. (2014). Exogenous proline and         glycine betaine mediated upregulation of antioxidant defense and glyoxalase systems provides better protection         against salt-induced oxidative stress in two rice (Oryza sativa L.)varieties. BioMed ResInternational.http://        dx.doi.org/10.1155/2014 /757219.

  10. Iqbal, N., Ashraf. M.Y.  and  Ashraf. M. (2005). Influence of water stress and exogenous glycinebetaine on sunflower         achene weight and oil percentage. Int J Environ Sci Tech. 2: 155-160

  11. Kausar, N., Nawaz., K., Hussain., K., Bhatti., K.H.,  Siddiqi., E.H.  and Tallat. A. (2014). Effect of exogenous applications         of glycine betaine on growth and gaseous exchange attributes of two maize (Zea mays L.) cultivars under saline         conditions. World Appl Sci J. 29 (12): 1559-1565.

  12. Ma, Q.Q., Wang. W. , Li., Y.H. ,  Li., D.Q.  and Zou. Q. (2006). Alleviation of photo inhibition in drought stressed wheat         (Triticum aestivum) by foliar applied glycine betaine. J Pl Physiol. 163: 165-75.

  13. Manaf, H.H. (2016). Beneficial effects of exogenous selenium, glycine betaine and seaweed extract on salt stressed cowpea         plant. Ann Agric Sci. 61: 41-48.

  14. Manickavelu, A., Kawaura., K., Oishi., K., Shin., I.T. , Kohara., Y. , Yahiaoui., N, Keller., B.,  Abe., R. , Suzuki., A.,         Nagayama., T.,. Yano. K  and Ogihara. Y. (2012). Comprehensive functional analyses of expressed sequence tags         in common wheat (Triticum aestivum). DNA Res. 19: 165-177.

  15. Miri, H.R. and Armin. M. (2013). The interaction effect of drought and exogenous application of glycine betaine on corn         (Zea mays L.). Eur J Exp Biol. 3(5): 197-206.

  16. Molla, M.R., Ali., M.R. , Hasanuzzaman., M., Al-Mamun., M.H. ,  Ahmed. A., et al.  (2014). Exogenous proline and         betaine-induced upregulation of glutathione transferase and glyoxalase I in lentil (Lens culinaris) under drought         stress. Not Bot Horti Agrobo. 42(1): 73-80. 

  17. Park, E.J., Jeknic., Z., Pino., M.T. , Murata. N. and Chen. T.H.H (2007). Glycinebetaine accumulation is more effective in         chloroplasts than in the cytosol for protecting transgenic tomato plants against abiotic stress. Plant Cell Environ.         30: 994-1005.

  18. Plaut, Z., Butow., B.J. , Blumenthal. C.S and Wrigley. C.W. (2004). Transport of dry matter in to developing wheat kernels         and its contribution to grain yield under post anthesis water deficit and elevated temperature. Field Crops Res. 86:         185-198.

  19. Raza, M.A.S., Saleem., M.F.,  Shah., G.M. , Khan. I.H.  and Raza. A. (2014). Exogenous application of glycinebetaine and         potassium for improving water relations and grain yield of wheat under drought. J Soil Sci Plant Nutr. 14: 348-364.

  20. Shahbaz, M., Massod., Y.,  Perveen. S.  and Ashraf. M. (2011). Is foliar applied glycinebetaine effective in mitigating the         adverse effects of drought stress on wheat (Triticum aestivum L.). J Appl Bot Food Qual. 84: 192-199.

  21. Streck, N.A. (2005). Climate change and agro-ecosystems: the effect of elevated atmospheric CO2 and temperature on crop         growth, development and yield. Ciencia Rural. 35: 730-740.

  22. Wang, G.P., Zhang., X.Y. , Li., F., Luo. Y. and Wang. W. (2010). Over accumulation of glycine betaine enhances tolerance         to drought and heat stress in wheat leaves in the protection of photosynthesis. Photosynthetica. 48: 117-126.

  23. Wang, W.,.Vinocur. B and Altman. A. (2003). Plant responses to drought, salinity and extreme temperatures: towards         genetic engineering for stress tolerance. Planta. 218: 1-14.

  24. Zhao, X.X., Ma., Q.Q. , Liang., C. ,  Fang., Y., Wang. Y.Q.  and Wang. W.  (2007). Effect of glycinebetaine on function of         thylakoid membranes in wheat flag leaves under drought stress. Biol Plant. 51: 584-588.

Editorial Board

View all (0)