Indian Journal of Agricultural Research

  • Chief EditorV. Geethalakshmi

  • Print ISSN 0367-8245

  • Online ISSN 0976-058X

  • NAAS Rating 5.60

  • SJR 0.293

Frequency :
Bi-monthly (February, April, June, August, October and December)
Indexing Services :
BIOSIS Preview, ISI Citation Index, Biological Abstracts, Elsevier (Scopus and Embase), AGRICOLA, Google Scholar, CrossRef, CAB Abstracting Journals, Chemical Abstracts, Indian Science Abstracts, EBSCO Indexing Services, Index Copernicus
Indian Journal of Agricultural Research, volume 54 issue 1 (february 2020) : 112-116

Comparative Toxicity and Synergism in Two-Spotted Spider Mite (Tetranychus urticae) Under Disruptive Selection

Hassan G.I. Ali, Oleg V. Sundukov, Tamara S. Astarkhanova
1Agricultural-Technological Institute, RUDN University, Moscow, 117198, Russia.
Cite article:- Ali G.I. Hassan, Sundukov V. Oleg, Astarkhanova S. Tamara (2019). Comparative Toxicity and Synergism in Two-Spotted Spider Mite (Tetranychus urticae) Under Disruptive Selection. Indian Journal of Agricultural Research. 54(1): 112-116. doi: 10.18805/IJARe.A-432.
The two-spotted spider mite is a destructive phytophagous of agricultural and horticultural crops. The disruptive selection had fulfilled on T. urticae females in 20 inbred generations. The selection of individual female genotypes was carried out according to a lethality rate of diagnostic concentrations of each acaricides. Malathion and fenpyroximate strains performed for comparative toxicity to five acaricides belonging to different chemical groups: dimethoate, bifenthrin, pyridaben, brompropylate and abamectin. The results allow us to conclude the malathion and fenpyroximate in mites with resistance alleles to one of these acaricides showed that, normalization of biochemical processes on the mitochondrial membrane depends on the function of the transport plasma membrane system. The expression of the malathion resistance gene was completely suppressed by the butyphos esterase inhibitor, while fenpyroximate resistance gene  was not manifested in the inhibition of PBO activity of monooxygenases enzymes.
  1. Belenkiy, M.L. (1959). Elementy kolichestvennoi otsenki farmacologicheskogo effekta (Elements of Quantitative Estimation of Pharmacological Action), Riga: AN Latv SSR.
  2. Cho, J.R., Kim, Y.J., Ahn, Y.J., Yoo, J.K. and Lee, J.O. (1995). Monitoring of acaricide resistance in field collected populations of Tetranychus urticae (Acari: Tetranychidae) in Korea. Korean J Appl Entomol. 31: 40–45.
  3. Dekeyser, M.A. (2005). Acaricide mode of action. Pest Manag. Sci. 61(2): 103-110. ISSN 1526-498X.
  4. Gunning, R.V., Devonshire, A.L. and Moores, G.D. (1995). Metabolism of esfenvalerate by pyrethroid-susceptible and -resistant Australian Helicoverpa armigera (Lepidoptera: Noctuidae). Pestic Biochem Physiol. 51:205–213.
  5. Gupta, V.N. and Gupta, S.K. (1985). Mites associated with vegetable crops in West Bengal. Indian J. Acarol. 10:61-64.
  6. Kumar, S., Prasad, S. and Singh, R.N. (2003). Population trends of two-spotted spider mite (Tetranychus urticae) in relation to abiotic factor on French marigold (Tagetes patula). Indian Journal of Agricultural Sciences. 73(5): 303-304.
  7. Leeuwen, T.V., Vontas, J. and Tsagkarakou, A. (2010). Acaricide resistance mechanisms in the two-spotted spider mite Tetranychus urticae and other important Acari. A review. Insect Biochem Mol Biol. 40:563-572. 
  8. Nauen, R., Bretschneider, T., Elbert, A., Fisher, R. and Tiemann, R. (2003). Spirodiclofen and spiromesifen. Pestic Outlook. 12:243–245. 
  9. Oku, K., and Beukenm, T.P.G.V. (2017). Male behavioural plasticity depends on maternal status in the two-spotted spider mite. Exp Appl Acarol. 71:319-327.
  10. Oku, K., (2010). Males of the two-spotted spider mite attempt to copulate with mated females: effects of double mating on fitness of either sex. Exp Appl Acarol. 50: 107-113. 
  11. Pottelberge, S.V., Leeuwen, T.V., Nauen, R. and Tirry, L. (2009). Resistance mechanisms to mitochondrial electron transport inhibitors in a field-collected strain of Tetranychus urticae Koch (Acari:Tetranychidae). Bulletin Entomol Research. 99:23-31.
  12. Rai, S.N. and Singh, J. (2008). Efficacy of some acaricides/ insecticides against Tetranychus urticae Koch. on okra. Indian J. Ent. 70(2): 169-171.
  13. Stumpf, N. and Nauen, R. (2001). Cross-resistance, inheritance, and biochemistry of mitochondrial electron transport inhibitor acaricide resistance in Tetranychus urticae (Acari: Tetranychidae). J Econ Entomol. 94: 1577–1583.
  14. Sundukov, O.V. (2012). Aetiology of sharp toxic action and physiological factors of selective insecticidal activity on arthropods. Nauka, St. Petersburg, Russia. 
  15. Tsagkarakou, A., Leeuwen, T. and Khajehali, J. (2009). Identification of pyrethroid resistance associated mutationsin the para sodium cyannel of the two-spotted spider mite Tetranychus urticae (Acari:Tetranychidae). Insect Mol Biol. 18:583-593. 
  16. Urbah, V.Yu. (1964). Biometrical Methods, Moscow, Russia. 
  17. Valles, S.M., Koehler, P.G. and Brenner, R.J. (1997). Antagonism of fipronil toxicity by piperonyl butoxide and S,S,S-tributyl phosphorotrithioate in the German cockroach (Dictyoptera: Blattellidae). J Econ Entomol. 90:1254–1258.
  18. Young, S.J., Gunning, R.V. and Moores, G.D. (2005). The effect of piperonyl butoxide on pyrethroid-resistance-associated esterases in Helicoverpa armigera (Lepidoptera: Noctuidae). Pest Manag Sci. 61:397–401.
  19. Zhao, X. and Salgado, V.L. (2010). The role of GABA and glutamate receptors in susceptibility and resistance to chloride channel blocker insecticides. Pest Biochem Physiol. 97:153-160.

Editorial Board

View all (0)