Indian Journal of Agricultural Research

  • Chief EditorV. Geethalakshmi

  • Print ISSN 0367-8245

  • Online ISSN 0976-058X

  • NAAS Rating 5.60

  • SJR 0.293

Frequency :
Bi-monthly (February, April, June, August, October and December)
Indexing Services :
BIOSIS Preview, ISI Citation Index, Biological Abstracts, Elsevier (Scopus and Embase), AGRICOLA, Google Scholar, CrossRef, CAB Abstracting Journals, Chemical Abstracts, Indian Science Abstracts, EBSCO Indexing Services, Index Copernicus
Indian Journal of Agricultural Research, volume 53 issue 3 (june 2019) : 338-342

Genetic divergence landrace of langsat (Lansium parasiticum) from Siberut Island based on ITS and MatK markers

Miftahul Huda, Syamsuardi, Nurainas, P. Murni, R. Maulidah
1Department of Biology, Faculty of Mathematics and Natural Science, Andalas University, Padang 25163, West Sumatra, Indonesia.
Cite article:- Huda Miftahul, Syamsuardi, Nurainas, Murni P., Maulidah R. (2019). Genetic divergence landrace of langsat (Lansium parasiticum) from Siberut Island based on ITS and MatK markers. Indian Journal of Agricultural Research. 53(3): 338-342. doi: 10.18805/IJARe.A-398.
Langsat is a specific potential of tropical fruit, especially in the Southeast Asia region. The center of distribution this species in Indonesia is Sumatra region, including the Siberut Island. There are some local germplasms (landraces) of langsat from Siberut Island namely Seccet, Siamung, Telu toru gokgok, Elakmata, and Langsat padang. Analysis of genetic diversity and genetic divergence is very important for sustainable utilizing of this tropical fruit. Based on analyzed of fourteen accessions of langsat using ITS and MatK markers indicated that landrace of langsat from Siberut Island had the higher diversity of haplotypes (ITS, Hd = 0.95; MatK, Hd = 0.80) compared to those of the Sumatran mainland (ITS, Hd = 0.85; MatK, Hd = 0.28). Based on the phylogenetic trees of fourteen accessions analyzed showed that the accessions of langsat from Siberut Island were separated from accessions of Sumatran mainland.
  1. Alvarez, I. and Wendel, J.F. (2003). Ribosomal ITS sequences and plant phylogenetic inference. Molecular Phylogenetics and Evolution. 29: 417-434.
  2. Cristobal, M.D. and Herrero, B. (2016). Genetic characterization of spanish lentil landraces (Lens culinaris Medik.) by Biochemical Markers. Indian Journal of Agricultural Research. 50: 214-219.
  3. Dong, W., Liu, J., Yu, J., Wang, L., Zhou, S. (2012). Highly variable chloroplast markers for evaluating plant phylogeny at low taxonomy levels and for DNA barcoding. Plos One. 7: e35071.
  4. Doyle, J.J. and Doyle, J.L. (1987). A rapid DNA isolation procedure from small quantities of fresh leaf tissue. Phytochemistry Bulletin. 19: 11-15.
  5. Dunning, L.T. and Savolainen, V. (2010). Broad-scale amplification of MatK for DNA barcoding plants, a technical note. Botanical Journal of the Linnean Society. 164: 1-9.
  6. Hadi, S., Ziegler, T., Waltert, M., Hodges, J.K. (2009). Tree diversity and forest structure in northern Siberut, Mentawai islands, Indonesia. Tropical Ecology, 50: 315-527.
  7. Indra. G., Nurainas, Chairul, Mansyurdin (2017). Species diversity and community structure of fruit trees in Pumonean at Siberut, Mentawai Island, Indonesia. International Journal of Current Research in Biosciences and Plant Biology. 4: 29-37.
  8. Larkin, M.A., Blackshields, G., Brown, N.P., Chenna, R., McGettigan, P.A., McWilliam, H., et al. (2007). Clustal W and Clustal X version 2.0. Bioinformatics. 23: 2947-2948.
  9. Manosroi, A., Kumguan, K., Chankhampan, C., Manosroi, W., Manosroi, J. (2012). Nanoscale gelatinase A (MMP-2) inhibition on human skin fibroblasts of Longkong (Lansium domesticum Correa) leaf extracts for anti-aging. Journal of Nanoscience and Nanotechnology. 12: 7187-7197.
  10. Muellner, A.N., Samuel, R., Johnson, S.A., Cheek, M., Pennington, T.D., Chase, M.W. (2003). Molecular phylogenetics of Meliaceae (Sapindales) based on nuclear and plastid DNA sequences. American Journal of Botany. 90: 471-480.
  11. Nei, M., and Tajima, F. (1981). DNA polymorphism detectable by restriction endonucleases. Genetics. 97:145.
  12. Rozas, J., Sanchez-DelBarrio, J.C., Messeguer, X., Rozas, R. (2003). DnaSP, DNA Polymorphism analyses by the coalescent and other methods. Bioinformatics. 19: 1451-1452.
  13. Saitou, N. and Nei, M. (1987). The Neighbor-Joining Method: A new method for constructing phylogenetic trees. Molecular Biology and Evolution. 4: 406-425.
  14. Syamsuardi, Chairul, and Murni, P. (2018). Analysis of genetic impurity of an original cultivar duku (Lansium parasiticum (Osbeck.) K.C Sahni & Bennet.), from Jambi, Indonesia Using ITS and MatK Gene. International Journal of Environment, Agricultural and Biotechnology. 3: 441-446.
  15. Tilaar, M., Wih, W.L., Ranti, A.S., Wasitaatmadja, S.M., Suryaningsih, Junardy, F.D., Maily (2008). Review of Lansium domesticum Corrêa and its use in cosmetics. Boletín Latinoamericano y del Caribe de Plantas Medicinales y Aromáticas. 7: 183-189.
  16. Panwar, A., Sharma, Y.K., Meena, R.S., Solanki, R.K., Aishwath, O.P., Singh, R., Choudhary, S. 2017. Genetic variability, association studies and genetic divergence in Indian fenugreek (Trigonella foenum- graecum L.) Varieties. Legume Research An International    Journal. 41: 816-821.
  17. Tamura, K., Stecher, G., Peterson, D., Filipski, A., Kumar, S. (2013). MEGA Molecular evolutionary genetics analysis version 6.0. Molecular Biology and Evolution. 30: 2725-2729.
  18. Verstappen, H.T. (1975). On Paleoclimates and Landform Development in Malaysia. In: Modern Quaternary Research in Southeast Asia, (Bartstra, G.J. and Casparie, W.A. (eds.). Balkema, Rotterdam. p. 3-36.
  19. Villa, T.C.C., Maxted, N., Scholten, M., Lloyd, B.F. (2005). Defining and identifying crop landraces. Plant Genetic Resources. 3: 373-384.
  20. Venkateswarlu, O., Sudhakar, B.V.G., Sekhar, M.R., Sukhakar. P. 2011. Genetic divergence in confectionary types of groundnut (Arachis hypogaea L.). Legume Research. 34: 1-7. 

Editorial Board

View all (0)