DOI: 10.5958/j.0976-058X.48.1.005    | Article Id: A-3970 | Page : 29-34
Krishan Murari Mangal, Ajay Kumar and Pragati Saini1
Address : Department of Microbiology, School of Life Sciences, ITM University, Gwalior- 474 001, India


In present study an attempt has been made to investigate the allelopathic effects at different concentrations (25, 50, 75 & 100 %) of Calotropis leaves extract on seed germination, seed biomass and radicle length of Vigna sinensis. The results showed that the germination delayed at the higher concentrations, and the final germination percentage was decreased by increasing leaf extract concentration. Seed biomass was decreased with increasing the concentrations and highest concentration (100 %) adversely affected the fresh as well as dry seed biomass. The seeds were highly affected at two concentrations (50 and 100%). The leaf extract also possessed the biological activity against many bacterial and fungus cultures. Phytochemical screening of the extract showed the presence of a number of bioactive constituents such as glycosides, tannins, saponins, terpenes, phenols and flavonoids etc. Hence, it could be suggested that Calotropis gigantea should not be planted close to agricultural crops due to adverse effects on their growth.


Allelopathic effect Calotropis gigantea Radicle length Seed biomass Seed germination.


  1. Abu-Romman, S.M. and Shibli, R. (2010). Allelopathic effects of spurge (Euphorbia hierosolymitana) on wheat (Triticum durum). Eur. J. Agricult. Environ. Sci., 7: 298–302.
  2. Al-Zahrani, H.S. and Al-Robai, S.A. (2007). Allelopathic effect of Calotropis procera leaves extract on seed germination of some plants. J. King Abdollah Univ. Sci., 19: 115–126.
  3. Adamo, H.M., Ali, B., Odis, M. and Matchawe, C. (2000). Antimicrobial activity and phytochemical screening of some selected medicinal plants in Bauchi (Nigeria). J. Econ. Taxon. Bot., 24(1): 123-127.
  4. Bauer A.W., Kirby, W.M.M., Sherries, J.C. and Truck, M. (1966). Antibiotic susceptibility testing by standard single disc diffusion method. Am J Clin Pathol., 45: 493.
  5. Berhow M.A. and Voughn, S.F. (1999). Higher plant flavanoids: biosynthesis and chemical ecology In: Principles and practices in plant Ecology: [Inderjit, K.; Dakshini, M.M. and Foy, C. L. (Eds)], 423– 438. Allelochemical Interactions.
  6. Bhatt, B.P. and Todoria, N.P. (1990). Studies on the allelopathic effects of some agroforestry tree crops of Garhwal Himalaya, Agroforest. Sys., 12: 251-255.
  7. Chandra, J. and Mali, M.C. (2012). Allelopathic effect of Acacia tortilis on germination and seedling growth of Prosopis chilensis. Life Sci. Leaf., 2: 53–57.
  8. Chon, S.U., Coutts, J.H. and Nelson, C.J. (2000). Effects of light, growth media and seedling orientation on bioassays of alfalfa autotoxicity. Agron. J. 92: 715-720.
  9. Conard, S.G. (1985). Inhibition of Abies concolor radicle growth by extracts of Ceanothus velutinus. Madrono., 32: 118-121.
  10. Das, C.R., Mondal, N.K., Aditya, P., Banerjee, A. and Das, K. (2012). Allelopathic potentialities of leachates of leaf litter of some selected tree species on gram seeds under laboratory conditions. Asian J. Exp. Biol. Sci., 3: 59–65.
  11. Djanajuiraman, M., Vaidyanathan, R., Sheeba, J.A., Dourgadevi, D. and Bangarusamy, U. (2005). Physiological responses of Eucalyptus globulus leaf leachate on seedling physiology of rice, sorghum and blackgram. Internat. J. Agricult. Biol., 7: 35–38.
  12. Djurdjevic, L.A., Dinic, P., Pavlovic, M., Mitrovic, B., Karadzic, R. and Tesevic, V. (2004). Allelopathic potential of Allium ursinum L. Biochem. Syst. & Ecol., 32: 533-544.
  13. El-Khatib, A.A. and Abd-Elaah, G.A. (1998). Allelopathic potential of Zilla spinosa on growth of associate flowering plants and some rhizosphere fungi. Biol. Plant., 41: 461–467.
  14. Harborne, J.B. (1984). Phytochemical Methods. Chapman and Hall New York.
  15. Heneidak, S., Grayer, R.J., Kite, G.C. and Simmonds, M.S.J. (2006). Flavonoid glycosides from Egyptian species of the tribe Asclepiadeae (Apocynaceae, subfamily Asclepiadoideae). Biochem. Systemat. Ecol., 34: 575-584.
  16. Hussain, F. and Khan, T.W. (1988). Allelopathic effects of Pakistani wed Cynodon dactylon L. J. Weed Sci. Res., 1:8–17.
  17. Irshad A. and Cheema. Z.A. (2004). Influence of Some Plant Water Extracts on the Germination and Seedling Growth of Barnyard Grass (E. crus-galli (L) Beauv). Pak. J. Sci. Ind. Res., 43(3):222-226.
  18. Kalburtji, K.L. and Mosjidis, J.A. (1993a). Effects of Sericea lespedeza root exudates on some perennial grasses, J. Range Manag., 46: 312-314.
  19. Kalburtji, K.L. and Mosjidis, J.A. (1993b). Effects of Sericea lespedeza residues on cool season grasses, J. Range Manag., 46: 315-319.
  20. Kumar, M., Malik, V. and Joshi, M. (2009). Allelopathic effect of Melia azedarach, Morus alba and Moringa oleifera on germination, radicle and plumule growth of Glycine max. Manag. Agroforest., 30(2): 167-168.
  21. Nishida, N.S., Tamotsu, N., Nagata, C., Saito, K. and Sakai, A. (2005). Allelopathic effects of volatile monoterpenoides produced by Salvia leucophylla: Inhibition of cell proliferation and DNA synthesis in the root apical meristem of Brassica campestris seedlings. J. Chemist. Ecol., 31: 1187-1203.
  22. Ogbe, F.M.O., Gill, L.S. and Iserhien, E.O.O. (1994). Effects of aqueous extracts of C. odorata L. on radical and plumule growth and seedling height of maize, Z. mays L.. Composite Newsletters. 25, 31-38.
  23. Oudhia, P. Kolhe, S.S. and Tripathi, R.S. (1997). Allelopathic effect of Calotropis gigantea on germination and seedling vigour of chickpea. Legume Res., 20(2): 133-136.
  24. Patil, B.P. (1994). Effects of Glyricidia maculata L. extracts on field crops, Allelopathy J., 1: 118- 120.
  25. Phiri, C. (2010). Influence of Moringa oleifera leaf extracts on germination and early seedling development of major cereals. Agricult. Biol. J. North America, 1(5): 774-777.
  26. Phiri, C. and Mbewe, D.M. (2010). Influence of Moringa oleifera Leaf Extracts on Germination and Seedling Survival of Three Common Legumes, Internat. J. Agricult. Biol., 12(2): 315-317.
  27. Pukclai, P. and Kato-Noguchi, H. (2012). Allelopathic potential of Tinospora tuberculata Beumee on twelve test plants species. J. Plant Biol. Res., 1: 19–28.
  28. Siddiqui, S., Bhardwaj, S., Saeed, S. and Meghvanshi, M.K. (2009). Allelopathic Effect of different Concentration of Water Extract of Prosopsis juliflora Leaf on Seed Germination and Radicle Length of Wheat. American- Eurasian J. Sci. Res., 4(2): 81-84.
  29. Smith, A.E. (1990). The potential allelopathic characteristic of bitter sneezeweed (Helenium amarum). Weed Sci., 37: 665-669.
  30. Tanveer, A.A., Rehman, M.M., Javaid, R.N., Abbas, M., Sibtain, A., Azraf, U., Haq, M.S., Ibin-I-Zamir, K.M., Chaudhary, J. and Aziz, A. (2010). Allelopathic potential of Euphorbia helioscopia L. against wheat (Triticum aestivum L.), chickpea (Cicer arietinum L.) and lentil (Lens culiaris Medic). Turkey J. Agricult. Forest, 34: 75–81.
  31. Taylor, R.S.L., Manandhar, N.P., Hudson, J.B. (1996). Antiviral activities of Nepalese medicinal plants. J Ethnopharmacol, 52(3): 157-163.
  32. Tobe, K., Li, X. and Omasa, K. (2000). Seed germination and radicle growth of halophyte Kalidium capsicum (Chenopediaceae), Annals of Botany, 85 (3): 391-396.
  33. Turk, M.A. and Tawaha, A.M. (2003). Allelopathic effect of black mustard (Brassica nigra L.) on germination and growth of wild oat (Avena fatua L.). Crop Protect., 22 (4): 673-677.
  34. Williamson, G.B., Richardson, D.R. and Fischer, N.H. (1992). Allelopathic mechanism in fireprone communities, In: S.J.H. Rizivi and V. Rizivi (eds.), Allelopathy: Basic and Applied Aspects, Chapman and Hall, London, pp: 59-75.

Global Footprints