Indian Journal of Agricultural Research

  • Chief EditorV. Geethalakshmi

  • Print ISSN 0367-8245

  • Online ISSN 0976-058X

  • NAAS Rating 5.60

  • SJR 0.293

Frequency :
Bi-monthly (February, April, June, August, October and December)
Indexing Services :
BIOSIS Preview, ISI Citation Index, Biological Abstracts, Elsevier (Scopus and Embase), AGRICOLA, Google Scholar, CrossRef, CAB Abstracting Journals, Chemical Abstracts, Indian Science Abstracts, EBSCO Indexing Services, Index Copernicus
Indian Journal of Agricultural Research, volume 48 issue 6 (december 2014) : 409-420

SURROGATE ESTIMATION OF SOIL WATER RETENTION CHARACTERISTICS OF SEASONALLY IMPOUNDED SOILS

N.G. Patil*, G.S. Rajput1
1National Bureau of Soil Survey and Land Use Planning, Shankarnagar, P.O, Nagpur-440 010, India
Cite article:- Patil* N.G., Rajput1 G.S. (2024). SURROGATE ESTIMATION OF SOIL WATER RETENTION CHARACTERISTICS OF SEASONALLY IMPOUNDED SOILS. Indian Journal of Agricultural Research. 48(6): 409-420. doi: 10.5958/0976-058X.2014.01324.9.
Measurement of soil hydraulic properties is an arduous task, especially to meet the large scale data requirements. This has prompted numerous studies on surrogate estimation of hydraulic properties. Objective of this study was to build regional hydraulic database and develop pedotransfer functions (PTF) for estimation of water retention characteristics (WRC) of seasonally impounded shrink-swell soils. Soil samples from 41 soil profiles were analyzed in the laboratory for soil-water retention at nine pre-determined suction pressure points and basic soil properties. These data were used for calibrating neural PTFs to predict Van Genuchten (VG) function parameters for prediction of WRC from basic soil properties data. Routine method of deriving and relating retention function parameters to basic soil properties and Neuro-m method resulted in unacceptable PTFs (RMSE > 0.05 m3 m-3) . In place of parameters derived from SWRC, we used ‘Rosetta’ estimates of VG parameters to relate basic soil properties. Resultant hierarchical parametric PTFs with prediction accuracy of RMSE
  1. Adhikary, P. P.; Chakraborty, D.; Kalra, N.; Sachdev, C. B.; , Patra, A. K.; Kumar, S.; Tomar, R. K. ; Chandna, P.; Raghav, D.; Agrawal, K. and Sehgal, M. (2008) Pedotransfer functions for predicting the hydraulic properties of Indian soils. Soil Research 46(5) 476–484.
  2. Black, C. A.; Evans, D. D.; Esingoger, L. E.; White, J. L. and Clark , F . E. (1965) Physical properties In: Methods of Soil Analysis. Part I and II, Amer. Soc. Agron. Madison, Wisconsin, U.S.A.
  3. Campbell, G. S. and Shizawa, Sho. (1990) Prediction of hydraulic properties of soils using particle size distribution and bulk density data. Proceedings of International Workshop in Indirect Methods for Estimating the Hydraulic Properties of Unsaturated Soils. USDA ARS/University of California, Riverside, CA.
  4. Chen, C. and Payne, W. A. (2001) Measured and modeled unsaturated hydraulic conductivity of a Walla Walla silt loam. Soil Science Society of America Journal 65:1385–1391.
  5. Donatelli, M. and Acutis, M. (2001) SOILPAR Computer code available at http://www.isci.it/tools
  6. Espino, A. D.; Mallants, M.; Vanclooster and Feyen, J. (1996) Cautionary notes on the use of pedotransfer functions for estimating soil hydraulic properties. Agricultural Water Management 29:235–253.
  7. Givi, J.; Prasher, S. O. and Patel, R. M. (2004) Evaluation of pedotransfer functions in predicting the soil water contents at field capacity and wilting point. Agricultural Water Management 70(2):83-96.
  8. Jackson, M. L. (1973). Soil Chemical Analysis. Prentice Hall India Limited, New Delhi.
  9. Jain, S. K.; Singh, V. P. and van, Genuchten, M.Th. (2004) Analysis of Soil Water Retention Data Using Artificial Neural Networks. J. Hydrologic Engg. 9(5): 415-420.
  10. Mandal, K. G.; Kundu, D. K.; Singh, R.; Kumar, A.; Rout, R.; Padhi, J.; Majhi, P. and Sahoo, D. K. (2013) Cropping practices, soil properties, pedotransfer functions and organic carbon storage at Kuanria canal command area in India. Springer Plus 2:631
  11. Minasny, B. and McBratney, A. B. (2002) The neuro-m method for fitting neural network parametric pedotransfer functions. Soil Science Society of America. Journal 66: 352-361.Nemes, A.; Schaap, M. G. and Wösten, J. H. M. (2003) Functional evaluation of pedotransfer functions derived from different scales of data collection. Soil Science Society of America. Journal 67:1093–1102.
  12. Parasuraman, K.; Elshorbagy, A. and Cheng, B., Si. (2007) Estimating saturated hydraulic conductivity using genetic Programming. Soil Science Society of America. Journal. 71:1676-1684
  13. Patil, N. G.; Rajput, G. S.; Nema, R. K. and Singh, R. B. (2010) Predicting hydraulic properties of seasonally impounded soils Journal of Agricultural Sciences Cambridge. 148: 159–170
  14. Patil, N. G.; Pal D. K.; Mandal, C. and Mandal, D. K. (2011) On describing soil water retention characteristics of vertisols and pedotransfer functions based on nearest neighbor and neural networks approach to estimate AWC. J. Irrigation and Drainage Engg. 138(2), 177–184.
  15. Rajput, G. S.; Singh, A.; Shrivastava, P.; Kewat, M. L. and Sharma, S. K. (2004) In: Indigenous Haveli System of Participatory Rainwater Management in Central India. J.N.K.V.V.V. Jabalpur. 22p.
  16. Rawls, W. J. and Brakensiek, D. L. (1982) Estimating soil water retention from soil properties. Journal of. Irrigation and Drainage Division, American. Society of Civil Engineers. 108, 166-171.
  17. Rawls, W. J.; Pachepsky, Y. and Shen, M. H. (2001) Testing soil water retention estimation with the MUUF pedotransfer model using data from the southern United States. Journal of Hydrology 251:177–185.
  18. Schaap, M. G.; Feike, J. L.; Martinus, L. and Van, Genuchten, M. Th. (2001) ROSETTA: a computer program for estimating soil hydraulic parameters with hierarchial pedotransfer functions. Journal of. Hydrology 251: 163-176.
  19. Soet, M. and Stricker, J. N. M. (2003) Functional behaviour of pedotransfer functions in soil water flow simulation. Hydrol. Process 17:1659–1670.
  20. Tomasella, J.; Pachepsky, Ya.; Crestana, S. and Rawls, W. J. (2003) Comparison of two techniques to develop pedotransfer functions for water retention. Soil Science. Society of America. Journal 67: 1085-1092.
  21. Van, Genuchten, M. Th. (1980) A closed-form equation for predicting the hydraulic conductivity of unsaturated Soils. Soil Science Society of America. Journal 44: 892-898.
  22. Wagner, B.; Tarnawski, V. R.; Hennings, V.; Muller, U.; Wessolek, G. and Plagge, R. (2003) Evaluation of pedo-transfer functions for unsaturated soil hydraulic conductivity using an independent data set. Geoderma 102:275–297.
  23. Wösten, J. H. M.; Pachepsky, Ya, A. and Rawls, W. J. (2001) Pedotransfer functions: bridging the gap between available basic soil data and missing soil hydraulic characteristics. Journal of Hydrology 251: 123-150.

Editorial Board

View all (0)