Indian Journal of Agricultural Research

  • Chief EditorT. Mohapatra

  • Print ISSN 0367-8245

  • Online ISSN 0976-058X

  • NAAS Rating 5.60

  • SJR 0.293

Frequency :
Bi-monthly (February, April, June, August, October and December)
Indexing Services :
BIOSIS Preview, ISI Citation Index, Biological Abstracts, Elsevier (Scopus and Embase), AGRICOLA, Google Scholar, CrossRef, CAB Abstracting Journals, Chemical Abstracts, Indian Science Abstracts, EBSCO Indexing Services, Index Copernicus
Indian Journal of Agricultural Research, volume 53 issue 1 (february 2019) : 33-38

Allelopathic effects of root exudates of some weeds on germinability and growth of radish (Raphanus sativus L.) and cucumber (Cucumis sativus L.)

Pervin Akter, Maksuda Islam
1Department of Botany, University of Chittagong, Chittagong-4331, Bangladesh.
Cite article:- Akter Pervin, Islam Maksuda (2019). Allelopathic effects of root exudates of some weeds on germinability and growth of radish (Raphanus sativus L.) and cucumber (Cucumis sativus L.). Indian Journal of Agricultural Research. 53(1): 33-38. doi: 10.18805/IJARe.A-381.
The Allelopathy phenomenon is an important component in a natural and an agro-ecosystems causing a stimulatory or inhibitory effect in crop production through the release of allelochemicals to the environment. In this study, the allelopathic effect on seed seed germination, seedling growth, fresh weight, dry weight, vigor index, total chlorophyll and carotenoid contents of radish (Raphanus sativus L.) and cucumber (Cucumis sativus L.) to the root exudates of Ageratum conyzoides L. (T1), Leucas aspera (Willd.) Link. (T2), Scoparia dulcis L. (T3), Spilanthes acmella L. (T4) and Vernonia patula (Dryand.) Merr. (T5) were studied in the laboratory. Results showed that the concentrated aqueous root exudates of T5 exerted highly reduced the effect of all the parameters as compared to control (distilled water) followed by T4. However, T2, T3, and T1 showed the least inhibitory effect on both the test crops. In comparison to cucumber, radish was more sensitive to inhibitory effects of aqueous root exudates of these five weeds. The result suggested that the root exudates may affect radish and cucumber seeds due to the inhibitory effect of allelochemicals which were present in the tested weeds. 
  1. Abdul-Baki, A.A. and Anderson, J.D. (1973). Vigour determination in soybean seed by multiple criteria. Crop Science, 13: 630–633.
  2. Abu-Romman, S., Shatnawi, M. and Shibli, R. (2010). Allelopathic effects of spurge (Euphorbia hierosolymitana) on wheat (Triticum durum). American-Eurasian Journal of Agricultural & Environmental Science, 7: 298-302.
  3. Aenavoli, M.R., Cacco, G., Sorgona, A., Marabottini, R., Paolacci, A.R., Ciaffi, M.M. and Baiani. M. (2006). The inhibitory effects of coumarin on the germination of durum wheat (Triticum turgidium ssp. Durum, cv. Simeto). Journal of Chemical Ecology, 32(2): 489-506.
  4. An, Y., Ma, Y. and Shui, J. (2013). Switchgrass root exudate have allelopathic potential on lettuce germination and seedling growth. Acta Agriculturae Scandinavica, Section B- Soil & Plant Science, 63: 497-505.
  5. Badri, D.V. and Vivanco, J.M. (2009). Regulation and function of root exudates. Plant Cell and Environment, 32: 666-681.
  6. Baleroni, C.R.S., Ferrarese, M.L.L. Souza, N.F. and Ferrarese-Filho, O. (2000) Lipid accumulation during canola seed germination in response to cinnamic acid derivatives. Biologia Plantarum, 43: 313-316.
  7. Batish, D.R, Kaur, S. Singh, H.P. and Kohli, R.K. (2008). Role of root mediated interactions in phytotoxic interference of Ageratum conyzoides with rice (Oryza sativa). Flora, 204: 388-395.
  8. Blanco, Y., Afifi, M. and Swanton, J. C. (2015). The effect of light quality on maize: A tool for weed plants management. Cultivos Tropicales, 36: 62-71.
  9. Channabasavanna, A.S., Talawar, A. M., Kitturmath, M.S. and Rajkumar, H. (2017). Evaluation of post emergence herbicides on grass weeds in pigeon pea and its bioassay on following crop. Indian Journal of Agriacultural. Research, 35: 188-190.
  10. Cimmino A., Andolfi A. and Evidence A. (2014) Phytotoxic terpenes produced by phytopathogenic fungi and allelopathic plants. Natural Product Communications, 9: 401-408.
  11. Devi, O.I., Dutta, B.K. and Choudhury, P. (2014). Allelopathic effects of some weed species on the growth of tomato plants (Solanum lycopersicum L.). Journal of International Academic Research for Multidiciplinary, 2: 445-454.
  12. Ding, H., Cheng, Z., Liu, M., Hayat, S. and Feng, H. (2016). Garlic exerts allelopathic effects on pepper physiology in a hydroponic co-culture system. Biology Open, 5: 631-637.
  13. Ebrahmi, L. and Hassaanejad, S. (2015). Allelopathic effects of syrian bean caper (Zygophyllum fabago L.) on seed germination and seedling growth of eastern dodder (Cuscuta monogyna Vahl.). Journal of Biodiversity and Enironmental Science, 7: 253-260.
  14. Einhellig, F.A., Ramusen, J.A., Hejl, A.M. and Souza, I. (1993). Effects of root exudate on sorgoleone on photosynthesis. Journal of Chemical Ecology, 19: 369-375.
  15. Elisante, F., Tarimo, M.T. and Ndakidemi., P.A. (2013). Allelopathic effect of seed and leaf aqueous extracts of Datura stramonium on leaf chlorophyll content, shoot and root elongation of Cenchrus ciliaris and Neonotonia wightii. American Journal of Plant Science, 4: 2332-2339.
  16. Gfeller, A., Glauser, G., Etter, C., Signarbieus, C. and Wirth, J. (2018). Fagopyrum esculentum alters its root exudation after Amaranthus retrofluxes recognition and suppress weed growth. Frontiers in Plant Science, 9: 1-12.
  17. Ghosh, P.K., Mandel, K.G. and Hati, K.M. (2000). Allelopathic effects of weeds on groundnut in India. Agricultural Review, 21: 66-69.
  18. Haig, T., (2008). Allelochemcals in plants. In: Allelopathy in sustainable agriculture and forestry (Zeng ,R.S., Mallick, A.U., Luo, S.M. eds.). Springer Science, Business Media, Berlin, Germany, pp. 63-104.
  19. Hu, L., Robert, C.A.M., Cadot, S., Zhang, X., Ye, M., Li, B., Manzo, D., Chervet, N., Steinger, T., van der Heijden, M.G.A. Schlaeppi, K. and Erb, M. (2018). Root exudate metabolites drive plant-soil feedbacks on growth and defense by shaping the rhizosphere microbiota. Nature Communications, 9: 1-13.
  20. Iman, A., Wahab, Z., Rasan, S.O.S. and Halim, M.R.A. (2006). Allelopathc effects of sweet corn and vegetamle soybean extracts at two growth stages on germination and seedling growth of corn and varieties. Journal of Agronomy, 5: 62-68.
  21. Jat, R.S., Meena, H.N. Singh, A.L. Surya, J.N. and Misra, J.B. (2011). Weed management in Groundnut (Arachis Hypogael L.) in India-A Review. Agricultural Reviews, 32: 155-171.
  22. Kaur, H., Inderjit S. and Kaushik S. (2005). Cellular evidence of allelopathic interference of benzoic acid to mustard (Brassica juncea L.) seedling growth. Plant Physiology and Biochemistry, 43: 77-81.
  23. Leela, P., Prabhakaran, J. and Arumugam, K. (2014). Allelopahic influence of Casuriana Equisetifolia L. on growth and development of rice. International Journal of Current Biotechnology, 2: 16-21.
  24. Lichtenthaler, H. and Wellburn, A. (1983). Determination of total carotenoids and chl-a and b of leaf extracts in different solvents. Biochemical Society Transaction, 603: 591-592.
  25. Mahmoodzadeh, H., Abbasi, F. and Ghotozadeh, y. (2011). Allelopathic effects of root exudates and leaching of rice seedlings on hedgemustard (Sisybrium officinale). Research Journal of Environmental Science, 5:486-492.
  26. Meissner, R., Nel, P.C. and Mith, N.H. (1982). The residual effect of Cyperus rotundus on certain crop plant. Agroplantae, 14: 47-53.
  27. Muzaffar, S., Ali B., and Wani, N.M. (2012). Effect of catechol, gallic acid and pyrogallic acid on the germination, seedling growth and the level of endogenous phenolics in cucumber (Cucumis sativa L.). international Journal of life Sciences Biotechnology and Pharma Research, 1: 51-59.
  28. Otusanya, O.O. Ikonoh, O.W. and Ilori, O.J. (2008). Allelopathic potentials of Tithonia diversifolia (Hemsl) A. Gray: Effect on the germination, growth and chlorophyll accumulation of Capsicum annum L. and Lycopersicon esculentum Mill. International Journal of Botany, 4: 471-475.
  29. Raj, S.K. and Syriac, E.K. (2016). Invasive alien weeds as bio-resources: A review. Agricultural Reeviews, 37: 196-204.
  30. Romero-Romero, T., Anaya, A.L. and Cruz-Ortega, R. (2002). Screening for the effects of phytochemical variability on cytoplasmic protein synthesis pattern of crop plants. Journal of Chemical Ecology, 28: 617-629.
  31. Salgude, P., Pol, M. and Kanade, M. (2015). Allelopathic effect of Cuscuta reflexa Roxb. on some physiological aspects in wheat. Bionano Frontier, 8: 179-181.
  32. Singh, R., Hazarika, U.K. Munda, G.C. and Sing, R. (1996). Weed management in groundnut Archaic hyopgea L. as influenced by seed rate and weed control methods. Indian Journal of Agronomy, 41: 438-441.
  33. Sitthinoi, P., Lertmongkol, S., Chanprasert, W., Vajrodaya, S. (2017). Allelopathic effects of jungle rice (Echinochloa colona L.) Link extract on seed germination and seedling growth of rice. Agriculture and Natural Resources, 51: 74-78.
  34. Tanvir, A., Rehman, A., Javiad, M.M., Abbas, R.N., Chaudhury, K.M. and Aziz, A. (2010). Allelopathic potential of Euphorbia heliscopia L. against wheat (Triticum aestivum L.), chickpea (Phaseopus arietinum L. and (Lens culinaris Medic.). Turkish Journal of Agricultural and Forestry, 34: 75-81.
  35. Travols, I.S., Paspatis, E. and Psomadei, E. (2008). Allelopathic potential of oxalis pes-caprae tissues and root exudates as a tool for integrated weed management. Journal of Agronomy, 7: 202-205.
  36. van Dam, N.M. and Bouwmeester, H.J. (2016). Metabolomics in the rhizosphere:tapping into belowground chemical communication. Trends in Plant Science, 21: 256-265.
  37. Vranova, V., Rejsek, K., Skene, K.R., Janous, D. and Formanek, P. (2013). Methods of collection of plant root exudates in relation to plant metabolism and purpose: A review. Journal of Plant Nutrition and Soil Science, 176:175-199.
  38. Xuan, T.D., Shinkichi, T., Khanh, T.D. and Chung, I.M. (2005). Biological control of weeds and plant pathogens in paddy rice by exploiting plant allelopathy: an overview. Crop Protection, 24: 197–206.
  39. Zhang, E-P., Zhang, S–H., Zhang, W-B., Li, L-L. and Li ,T-L. (2010). Effects of exogenic benzoic acid and cinnamic acid on the root oxidative damage of tomato seedlings. Journal of Horticulture and Forestry, 2: 022-029. 

Editorial Board

View all (0)