Legume Research

  • Chief EditorJ. S. Sandhu

  • Print ISSN 0250-5371

  • Online ISSN 0976-0571

  • NAAS Rating 6.67

  • SJR .391

  • Impact Factor .669 (2022)

Frequency :
Monthly (January, February, March, April, May, June, July, August, September, October, November and December)
Indexing Services :
BIOSIS Preview, ISI Citation Index, Biological Abstracts, Elsevier (Scopus and Embase), AGRICOLA, Google Scholar, CrossRef, CAB Abstracting Journals, Chemical Abstracts, Indian Science Abstracts, EBSCO Indexing Services, Index Copernicus
Legume Research, volume 45 issue 12 (december 2022) : 1572-1579

Efficacy of Three Entomopathogenic Fungi Beauveria bassiana, Metarhizium anisopliae and Lecanicillium lecanii Isolates against Black Bean Aphid, Aphis fabae (Scop.) (Hemiptera: Aphididae) on Faba bean (Vicia faba L.)

Tawfiq Qubbaj, Rana Samara
1Department of Plant Production and Protection, Faculty of Agriculture and Veterinary Medicine, An-Najah National University, Nablus P.O. Box 7, Palestine.
  • Submitted24-06-2022|

  • Accepted01-09-2022|

  • First Online 14-09-2022|

  • doi 10.18805/LRF-706

Cite article:- Qubbaj Tawfiq, Samara Rana (2022). Efficacy of Three Entomopathogenic Fungi Beauveria bassiana, Metarhizium anisopliae and Lecanicillium lecanii Isolates against Black Bean Aphid, Aphis fabae (Scop.) (Hemiptera: Aphididae) on Faba bean (Vicia faba L.). Legume Research. 45(12): 1572-1579. doi: 10.18805/LRF-706.
Background: A laboratory bioassay study was conducted to evaluate the in vitro pathogenicity of different isolates of B. bassiana, M. anisopliae and L. lecanii, against the adults of black bean aphid. 
Methods: The PCR-based method was used to identify the different isolates molecularly using sequence information from the ITS region. The total genomic DNA of the 19 fungal isolates was recovered from aphid cadavers using CTAB. The amplified DNA using QRT-PCR showed no significant differences in the ANOVA that tested mean cycle threshold (CT) values from the control. Post-molecular identification of the isolated entomopathogen was approved. The single discriminative concentration bioassay was carried out to determine LT50 values for each of twelve isolates to determine the most virulent for further studies. 
Result: LT50 values for B. bassiana, M. anisopliae and V. lecanii isolates varied from 110-113, 71-75 and 64-77 h, respectively. B. bassiana isolate BBK2, M. anisopliae isolate MAA2 and V. lecanii isolates VLJ2 were selected for further experiments based on their discriminating concentration values. LC50 of BBA post-exposure to isolates of V. lecanii, M. anisopliae and B. bassiana was 46, 269 and 251 ppm, respectively. A significant difference in cumulative mortality was recorded between the three EPF. M. anisopliae showed a higher significant cumulative mortality during the first and second days post-application. Then V. lecanii recorded higher significant cumulative mortality from the third until the seventh-day post-application. V. lecanii showed higher virulence among the other entomopathogenic isolates.

  1. Abbott, W.S. (1925). A method of computing the effectiveness of an insecticide. Joutnal of Economic Entomology. 18(2): 265-267.

  2. Almogdad, M. and Semaškienë, R. (2021). The occurrence and control of black bean aphid (Aphis fabae Scop.) in broad bean. Zemdirbyste. 108: 165-172.

  3. Altinok, H.H., Altinok, M.A., Koca, A.S. (2019). Modes of action of entomopathogenic fungi. Current Trends in Natural Sciences. 8: 117-124.

  4. Amer, M.M., El-Sayed, T.I., Bakheit, H.K., Moustafa, S.A., El-Sayed, Y.A. (2008). Pathogenicity and genetic variability of five entomopathogenic fungi against Spodoptera littoralis. Research Journal of Agriculture and Biological Sciences. 4: 354-367. 

  5. Anderson, T.E. and Roberts, D.W. (1983). Compatibility of Beauveria  bassiana isolate with insecticide formulations used Colorado potato beetle (Coleoptera: Chrysomelidae) control. Journal of Economic Entomology. 76: 1437-1441.

  6. Atta, B., Rizwan, M., Sabir, A.M., Gogi, M.D., Farooq, M.A., Batta, Y.A. (2020). Efficacy of entomopathogenic fungi against brown planthopper Nilaparvata lugens (Stål)(Homoptera: Delphacidae) under controlled conditions. Gesunde Pflanzen. 72: 101-112. 

  7. Bamisile, B.S., Siddiqui, J.A., Akutse, K.S., Ramos Aguila, L.C., Xu, Y. (2021). General limitations to endophytic entomopathogenic fungi use as plant growth promoters, pests and pathogens biocontrol agents. Plants. 10: 2119-2142. 

  8. Destéfano, R.H., Destéfano, S.A., Messias, C.L. (2004). Detection of Metarhizium anisopliae var. anisopliae within infected sugarcane borer Diatraea saccharalis (Lepidoptera, Pyralidae) using specific primers. Genetics and Molecular Biology. 27: 245-252. 

  9. Gabarty, A., Salem, H.M., Fouda, M.A., Abas, A.A., Ibrahim, A.A. (2014). Pathogenicity induced by the entomopathogenic fungi Beauveria bassiana and Metarhizium anisopliae in Agrotis ipsilon (Hufn.). Journal of Radiation Research and Applied Sciences. 7: 95-100. 

  10. Gindin, G., Levski, S., Glazer, I., Soroker, V. (2006). Evaluation of the entomopathogenic fungi Metarhizium anisopliae and Beauveria bassiana against the red palm weevil Rhynchophorus ferrugineus. Phytoparasitica. 34: 370-379. 

  11. Goettel, M.S. and Glare, T. (2005). Entomopathogenic fungi and their role in regulation of insect populations. Comprehensive Molecular Insect Science. 6: 361-405. 

  12. Hegedus, D.D. and Khachatourians, G.G. (1996). Identification and differentiation of the entomopathogenic fungus Beauveria bassiana using polymerase chain reaction and single-strand conformation polymorphism analysis. Journal of Invertebrate Pathology. 67: 289-299. 

  13. Hetjens, B.T., Tewes, T.J., Platte, F., Wichern, F. (2021). The application of raman spectroscopy in identifying Metarhizium brunneum, Metarhizium pemphigi and Beauveria bassiana.  Biocontrol Science and Technology. 32: 1-12. 

  14. Husien, H. (2019). Isolation, Identification, Pathogenicity Bioassay and Mass Production of Indigenous Isolate of Entomopathogenic Fungi against Red Palm Weevil Rhynchophorus ferrugineus (Olivier) (Coleoptera: Curculionidae). MSc thesis, Palestine Technical University-Kadoorie, Tulkarm, Palestine.

  15. Islam, W., Adnan, M., Shabbir, A., Naveed, H., Abubakar, Y.S., Qasim, M., Tayyab, M., Noman, A., Nisar, M.S., Khan, K.A., Ali, H. (2021). Insect-fungal-interactions: A detailed review on entomopathogenic fungi pathogenicity to combat insect pests. Microbial Pathogenesis. 159: 105-122. 

  16. Jackson, C.W., Heale, J.B., Hall, R.A. (1985). Traits associated with virulence to the aphid Macrosiphoniella sanborni in eighteen isolates of Verticillium lecanii. Annals of Applied Biology. 106: 39-48. 

  17. Javed, K., Javed, H., Mukhtar, T., Qiu, D. (2019). Efficacy of Beauveria bassiana and Verticillium lecanii for the management of whitefly and aphid. Pakistan Journal of Agricultural Sciences. 56: 669-674.

  18. Köpke, U. and Nemecek, T. (2010). Ecological services of faba bean. Field Crops Research. 115: 217-233.  

  19. Mahankuda, B. and Bhatt, B. (2019). Potentialities entomopathogenic fungus Beauveria bassiana as a biocontrol agent: A review. Journal of Entomology and Zoology Studies. 7: 870-874.

  20. Maketon, M., Chakanya, N., Prem-udomkit, K., Maketon, C. (2013). Interaction between entomopathogenic fungi and some aphid species in Thailand. Gesunde Pflanzen. 65: 93-105.  

  21. Mannino, M.C., Huarte-Bonnet, C., Davyt-Colo, B., Pedrini, N. (2019). Is the insect cuticle the only entry gate for fungal infection? Insights into alternative modes of action of entomopathogenic fungi. Journal of Fungi. 5: 33-42. 

  22. Milner, R.J. (1997). Prospects for biopesticides for aphid control. Entomophaga. 42: 227-239. 

  23. Nam, T.D., Abdulle, Y.A., Javed, K., Sokea, T., Qiu, D. (2020). A novel protein elicitor pevL1, from Verticillium lecanii 2, induces systemic resistance against bean aphid (Megoura japonica Matsumura) in Phaseolus vulgaris L. International  Journal of Plant, Animal and Environmental Sciences. 10: 81-94.

  24. Ojha, P.K., Kumari, R. and Pandey, N.K. (2018). Laboratory evaluation  of certain bio-pesticides against the larvae of Helicoverpa armigera Hubner. Legume Research. 41: 784-787.

  25. Parveen, S.S., Ramaraju, K. and Jeyarani, S. (2021). Entomopathogenic fungal screening against two spotted spider mites, Tetranychus urticae koch in tomato and broad mite, Polyphagotarsonemus latus (Banks) in Chilli. Indian Journal of Agricultural Research. 55: 488-492.

  26. Pegu, J., Dutta, P., Bhuyan, R.P. and Das, A. (2017). Metarhizium anisopliae (Metchnikoff) Sorokin as an alternative to chemical pesticides against Odontotermes obesus (Rambur) in the era of organic agriculture. Agricultural Science Digest-A Research Journal. 37: 137-140.

  27. Peng, G., Xie, J., Guo, R., Keyhani, N.O., Zeng, D., Yang, P., Xia, Y. (2021). Long-term field evaluation and large-scale application of a Metarhizium anisopliae strain for controlling  major rice pests. Journal of Pest Science. 94: 969-980. 

  28. Plantey, R.L., Papura, D., Couture, C., Thiéry, D., Pizzuolo, P.H., Bertoldi, M.V., Lucero, G.S. (2019). Characterization of entomopathogenic fungi from vineyards in Argentina with potential as biological control agents against the European  grapevine moth Lobesia botrana. Bio Control. 64: 501-511.  

  29. Rahate, K.A., Madhumita, M., Prabhakar, P.K. (2021). Nutritional composition, anti-nutritional factors, pretreatments-cum-processing impact and food formulation potential of faba bean (Vicia faba L.): A comprehensive review. LWT. 138: 110796. 

  30. Reddy, B.N., Lakshmi, V.J., Maheswari, T.U. and Laha, G.S. (2021). Compatibility of entomopathogenic fungi with neonicotinoids for the management of brown plant hopper of rice, Nilaparvata lugens stal. (Delphacidae: Hemiptera). Agricultural Science Digest-a Research Journal. 41: 324-328.

  31. Reddy, G.V., Zhao, Z., Humber, R.A. (2014). Laboratory and field efficacy of entomopathogenic fungi for the management of the sweet potato weevil, Cylas formicarius (Coleoptera: Brentidae). Journal of Invertebrate Pathology. 122: 10-15. 

  32. Reineke, A., Karlovsky, P., Zebitz, C.P. (1998). Preparation and purification of DNA from insects for AFLP analysis. Insect Molecular Biology. 7: 95-99.

  33. Sabbahi, R., Lavallée, R., Merzouki, A., Guertin, C. (2009). Differentiation of entomopathogenic fungus Beauveria bassiana (Ascomycetes: Hypocreales) isolates by PCR-RFLP. Phytoprotection. 90: 49-56. 

  34. Samada, L.H. and Tambunan, U.S. (2020). Biopesticides as promising alternatives to chemical pesticides: A review of their current and future status. Online Journal of Biological Sciences. 20: 66-76. 

  35. Samara, R. (2016). First records of endogenous bio-agent of the red palm weevil Rhynchophorus ferrugineus (Olivier) (Coleoptera: Curculionidae) in palestine. Journal of Agricultural and Crop Research. 2: 57-61.

  36. Saranya, S., Ushakumari, R., Jacob, S., Philip, B.M. (2010). Efficacy of different entomopathogenic fungi against cowpea aphid, Aphis craccivora (Koch). Journal of Biopesticides. 3: 138-142.

  37. Singh, H. and Joshi, N. (2020). Management of the aphid, Myzus persicae (Sulzer) and the whitefly, Bemisia tabaci (Gennadius), using biorational on capsicum under protected cultivation in India. Egyptian Journal of Biological Pest Control. 30: 1-9.

  38. Sufyan, M., Abbasi, A., Wakil, W., Gogi, M.D., Arshad, M., Nawaz, A., Shabbir, Z. (2019). Efficacy of Beauveria bassiana and Bacillus thuringiensis against maize stem borer Chilo Partellus (Swinhoe) (Lepidoptera: Pyralidae). Gesunde Pflanzen. 71: 197-204.

Editorial Board

View all (0)