Loading...

Induction of Genetic Variability in Cowpea Variety Videza for Extra Earliness and High Seed Yield using Gamma Irradiation Mutagenesis

DOI: 10.18805/LRF-685    | Article Id: LRF-685 | Page : 1074-1081
Citation :- Induction of Genetic Variability in Cowpea Variety Videza for Extra Earliness and High Seed Yield using Gamma Irradiation Mutagenesis.Legume Research.2022.(45):1074-1081
Innocent Kwaku Dorvlo, Stanley Akwesi Acquah, Jonathan Okai Armah, Jacob Teye Kutufam, Emmanuel Afutu, Alfred Anthony Darkwa, Godwin Amenorpe, Harry Mensah Amoatey, Samuel Amiteye samiteye@gmail.com
Address : Nuclear Agriculture and Radiation Processing, School of Nuclear and Allied Sciences, University of Ghana, Accra, Ghana.
Submitted Date : 4-03-2022
Accepted Date : 30-05-2022

Abstract

Background: Cowpea yields are very low in the West African region due to the prevalence of drought periods. This work, therefore, aimed at developing cowpea genotypes that combine early maturity with high seed yield, through gamma irradiation mutagenesis. 
Methods: A farmer preferred cowpea variety Videza was improved via gamma mutagenesis. A determined lethal dose 50% (LD50) of 240 Gy was used to irradiate 2000 seeds of Videza by applying a Cobalt 60 source. Selected M1 generation plants exhibiting early maturity and high seed yield were advanced to M2 and further to M3 using Videza as parental control.
Result: Compared to the control Videza, the number of days to 90% maturity significantly decreased in putative mutants in the M2 (from 71 days in the control to between 50 and 66 days in mutants) and further decreased in the M3 where mutants matured 10-22 days earlier than the control. Significant increment in 100-seed weight per plant occurred in the M3 mutants. In the M3, 100-seed weight increased from 15.28 g in Videza to 21.71 g, the highest in mutants. Twelve putative mutants were identified that combine early maturity with higher seed yield than the control.

Keywords

Agronomic trait Food security Mutagenesis Plant breeding Putative mutants Severe drought

References

  1. Agbicodo, E., Fatokun, C., Muranaka, S., Visser, R.G. (2009). Breeding drought tolerant cowpea: constraints, accomplishments and future prospects. Euphytica. 167(3): 353-370.
  2. Agyeman, K., Berchie, J.N., Osei-Bonsu, I., Tetteh Nartey, E., Fordjour, J.K. (2015). Seed yield and agronomic performance of seven improved cowpea varieties in Ghana. African Journal of Agricultural Research. 10(4): 215-221.
  3. Ahloowalia, B., Maluszynski, M., Nichterlein, K. (2004). Global impact of mutation-derived varieties. Euphytica. 135(2): 187-204. 
  4. Asare, A.T., Gowda, B.S., Galyuon, I.K., Aboagye, L.L., Takrama, J.F., Timko, M.P. (2010). Assessment of the genetic diversity in cowpea germplasm from Ghana using simple sequence repeat markers. Plant Genetic Resources. 8(2): 142-150.
  5. Bowles A.M.C., Paps, J., Bechtold, U. (2021). Evolutionary Origins of Drought Tolerance in Spermatophytes. Front. Plant Sci. 12:655924. doi: 10.3389/fpls.2021.655924.
  6. Dingha, B.N., Jackai, L.E., Amoah, B.A., Akotsen-Mensah, C. (2021). Pollinators on cowpea: Implications for intercropping to enhance biodiversity. Insect. 12(1): 54. Doi:10.3390/ insects12010054.
  7. Dematie, V.E., Fatokun, C., Boukar, O., Adetimirin, V.O., Kumar, P.L. (2021). Inheritance of pod length and other yield components in two cowpea and yard-long bean crosses. Agronomy. 11: 682.
  8. Ehlers, J. and Hall, A. (1997). Cowpea [Vigna unguiculata (L.) walp.]. Field Crops Research. 53(13): 187-204.
  9. Fatokun, C.A., Boukar, O., Muranaka, S. (2012). Evaluation of cowpea germplasm lines for tolerance to drought. Plant genetic resources. 10(3): 171-176.  
  10. Horn, L.N. (2016). Breeding cowpea for improved yield and related traits using gamma irradiation (Doctoral dissertation: University of KwaZulu-Natal).
  11. Jankowicz-Cieslak, J., Mba, C., Till, B.J. (2017). Mutagenesis for Crop Breeding and Functional Genomics. In: Biotechnologies for Plant Mutation Breeding [(eds) Jankowicz-Cieslak, J., Tai, T. H., Kumlehn, J., Till, B. J.]. (3-18) Springer, Cham. 
  12. Justin, M., Kabwe, K., Adrien, K.M., Roger, V.K. (2012). Effect of gamma irradiation on morpho-agronomic characteristics of soybeans. American Journal of Plant Sciences. 3(3): 331-337.
  13. Khan, S. and Wani, M.R. (2006). Induced mutations for yield contributing traits in green gram. International Journal of Agriculture and Biology. 8(4): 528-530.
  14. Laskar, R. and Khan, S. (2017). Mutagenic effectiveness and efficiency of gamma rays and HZ with phenotyping of induced mutations in lentil cultivars. International Letters of Natural Sciences. 64(23): 17-31. 
  15. Mba, C., Afza, R., Bado, S., Jain, S.M. (2010). Induced mutagenesis in plants using physical and chemical agents. Plant Cell Culture: Essential Methods. 20: 111-130.
  16. Odendo, M., Bationo, A., Kimani, S. (2011). Socio-economic Contribution of Legumes to Livelihoods in Sub-Saharan Africa. In: Fighting Poverty in Sub-Saharan Africa: The Multiple Roles of Legumes In: Integrated Soil Fertility Management [(eds) A. Bationo,  B. Waswa, J.M. Okeyo, F. Maina, J. Kihara and U. Mokwunye]. Springer Science Business Media. 27-46. 
  17. Owusu, E.Y., Akromah, R., Denwar, N.N., Adjebeng-Danquah, J., Kusi, F., Haruna, M. (2018). Inheritance of early maturity in some cowpea genotypes under rain fed conditions in northern Ghana. Advances in agriculture. 2018. 8930259. 1-10.
  18. Otusanya, O.G., Chigeza, G., Chander, S., Abebe, A.T., Sobowale, O.O., Ojo, D.K., Akoroda, M.O. (2022). Combining ability of selected soybean parental lines. Indian Journal of Agricultural Research. 56: 7-1.
  19. Selvan, S.S., Wahid, A., Patel, A., Kumar, V., Sahu, P. (2021). Challenges in indian agriculture. Agricultural Reviews. 42: 465-469.
  20. Shamsun, N.B., Mirza, M.I., Rigyan, G. (2018). Development of First Kabuli Type Chickpea Mutant Variety in Bangladesh (IAEA-CN-263). International Atomic Energy Agency. (IAEA).
  21. Subba, V., Nath. A., Kundagrami, S., Ghosh, A. (2022). Study of combining ability and heterosis in quality protein maize using line × tester mating design. Agricultural Science Digest. 42: 159-164.
  22. Wani, A.A. (2011). Induced polygenic variability for quantitative traits in chickpea var. Pusa-372. Comunicata Scientiae. 2(2): 100-106.
  23. Yuliasti, Y. and Reflinur, R. (2018). Genetic Diversity Fourteen Soybean Mutant Lines using SSR Markers and Yield Performance under Dry Land Condition (IAEA-CN-263). International Atomic Energy Agency (IAEA).

Global Footprints