​Effect of Rhizobacteria and Microalgae Treatments on Some Physiological and Biochemical Parameters of Fenugreek (Trigonella foenum-graecum L.) Grown under Drought Stress

DOI: 10.18805/LRF-675    | Article Id: LRF-675 | Page : 415-421
Citation :- ​Effect of Rhizobacteria and Microalgae Treatments on Some Physiological and Biochemical Parameters of Fenugreek (Trigonella foenum-graecum L.) Grown under Drought Stress.Legume Research.2022.(45): 415-421
M.S. Yolci, R. Tunçtürk, M. Tunçtürk, Ş. Ceylan, Y.E. Arvas musayol65@gmail.com
Address : Department of Field Crops, Van Yuzuncu Yıl University, Faculty of Agriculture 6500/ Turkey-Van.
Submitted Date : 27-12-2021
Accepted Date : 22-02-2022


Background: In this study, the effects of deficit irrigation (DI) (normal=control, ½ reduced and 3/4 reduced) and some beneficial rhizobacteria (Azospirillum lipoferum, Bacillus megaterium) and microalgae (Chlorella saccharophilia) on some physiological and biochemical parameters of fenugreek (Trigonella foenum-graecum) were investigated.
Methods: The experiment was carried out in a fully controlled climate cabinet with 4 replications in factorial order according to the completely randomized plot trial design. Fenugreek (Trigonella foenum-graecum) plant was used as material. The study aims to investigate the effects of different deficit irrigation treatments (normal (control), 1/2 reduced and 3/4 reduced) and some rhizobacteria (Control= R0, Azospirillum lipoferum= R1, Bacillus megaterium= R2) and microalgae (Chlorella saccharophilia= R3) on the growth and development of fenugreek plants. 
Result: Relative water content and membrane durability index values of leaf tissues decreased due to deficit irrigation applications, while ion leakage in leaf tissues, MDA and total phenolic substance content increased in leaf tissues. However, it was determined that they had positive effects on ion leakage in leaf tissues, total phenolic and flavonoid substance amounts of rhizobacteria and microalgae applications, but, membrane durability index in leaf tissues and MDA contents were affected as negative compared to the control.


​Drought stress Rhizobacteria Fenugreek Physiological and Biochemical parameters


  1. Abdelaal, K.A., EL-Maghraby, L.M., Elansary, H., Hafez, Y.M, Ibrahim, E.I., et al. (2020). Treatment of sweet pepper with stress tolerance-inducing compounds alleviates salinity stress oxidative damage by mediating the physio-biochemical activities and antioxidant systems. Agronomy. 10(1): 26.
  2. Alkahtani, M.D.F., Hafez, Y.M., Attia, K., Rashwan, E., Al Husnain, L., et al. (2021). Evaluation of silicon and proline application on the oxidative machinery in drought-stressed sugar beet. Antioxidants. 10(3): 1-19. 
  3. Bajji, M., Kinet, J.M. and Lutts, S. (2002). The use of the electrolyte leakage method for assessing cell membrane stability as a water stress tolerance test in durum wheat. Plant Growth Regul. 36(1): 61-70. 
  4. Bartels, D. and Sunkar, R. (2005). Drought and salt tolerance in plants. J. Microbiol. Biotechnol. 24(1): 23-58. 
  5. Basch, E., Ulbricht, C., Kuo, G., Szapary, P. and Smith, M. (2003). Therapeutic applications of fenugreek. Altern. Med Rev. 8: 20-27.
  6. Bat, M., Tunçtürk, R. and Tunçtürk, M. (2020). Ekinezya (Echinaceae purpurea L.) Bitkisinde Kuraklık Stresi ve Deniz Yosunu Uygulamalarının Bazı Fizyolojik Parametreler Üzerine Etkisinin Araştırılması. Kahramanmaraş Sütçü İmam Üniversitesi Tarım ve Doğa Derg. 3(1): 99-107.
  7. Basheer-Salimia, Aloweidat, M.Y., Al-Salimiya, M.A., Hamdan, Y.A.S., Sayara, T.A.S. (2021). Comparative study of five legume species under drought conditions. Legume Research- An International Journal. 44(6): 712.
  8. Bray, E.A. (2004). Genes commonly regulated by water-deficit stress in Arabidopsis thaliana. J. Exp. Bot. 55(407): 2331- 2341. 
  9. Dudley, S.A. (1996). Differing selection on plant physiological traits in response to environmental water availability: A test of adaptive hypotheses. Evolution (N. Y). 50(1): 92-102. 
  10. Düzgüneş, O., Kesici, T., Kavuncu, O., Gürbüz, F. (1987). Araştırma ve deneme metotları. Ankara Üniversitesi, Ziraat Fakültesi Yayınları, Ankara, 381s.
  11. Farooq, M., Ahmad, R., Shahzad, M., Sajjad, Y., Hassan, A. et al. (2021). Differential variations in total flavonoid content and antioxidant enzymes activities in pea under different salt and drought stresses. Sci. Hortic. (Amsterdam). 287: 110258. 
  12. Fernández-Aparicio, M., Emeran, A.A. and Rubiales, D. (2008). Control of Orobanche crenata in legumes intercropped with fenugreek (Trigonella foenum-graecum). Crop Prot. 27(3-5): 653-659. 
  13. Furlan, F., Saatkamp, K., Volpiano, C.G., De Assis Franco, F., Dos Santos, M.F. et al. (2017). Plant growth-promoting bacteria effect in withstanding drought in wheat cultivars. Sci. Agrar. 18(2): 104-113. 
  14. Guzzo, M.C., Costamagna, C., Salloum, M.S., Rotundo, J.L., Monteoliva, M.I., et al. (2021). Morpho-physiological traits associated with drought responses in soybean. Crop Sci. 61(1): 672-688.
  15. Heath, R.L. and Packer, L. (1968). Photoperoxidation in isolated chloroplasts. Arch. Biochem. Biophys. 125(1): 189-198.
  16. Ibrahim, M.H. and Jaafar, H.Z.E, (2011). Photosynthetic capacity, photochemical efficiency and chlorophyll content of three varieties of Labisia pumila Benth. exposed to open field and greenhouse growing conditions. Acta Physiol. Plant. 33(6): 2179-2185. 
  17. Jaafar, H.Z.E., Ibrahim, M.H. and Karimi, E. (2012). Phenolics and flavonoids compounds, phenylanine ammonia lyase and antioxidant activity responses to elevated CO2 in Labisia pumila (Myrisinaceae). Molecules.17(6): 6317-6330. 
  18. Jaleel, C.A., Manivannan, P., Wahid, A., Farooq, M., Al-Juburi, H.J., et al. (2009). Drought stress in plants: A review on morphological characteristics and pigments composition. Int. J. Agric. Biol. 11(1): 100-105.
  19. Jincya, M., Babu Rajendra Prasad, V., Jeyakumara, P., Senthila, A., Manivannan, N. (2021). Evaluation of green gram genotypes for drought tolerance by PEG (polyethylene glycol) induced drought stress at seedling stage. Legume Research- An International Journal. 44(6): 684-691.
  20. Kara, A., Tunçtürk. M. and Tunçtürk, R. (2019). Ekinezya (Echinaceae purpurea L.) bitkisinde tuz stresi ve deniz yosunu uygulamalarının bazı fizyolojik parametreler üzerine etkisinin araştırılması. Derim. 36(2): 199-206.
  21. Lutz, M., Jorquera, K., Cancino, B., Ruby, R. and Henriquez, C. (2011). Phenolics and antioxidant capacity of table grape (Vitis vinifera L.) cultivars grown in Chile. J. Food Sci. 76(7): 1088-1093. 
  22. Mihaljević, I., M.V, Vuletić., D, Šimić., V, Tomaš., D, Horvat., et al. (2021). Comparative study of drought stress effects on traditional and modern apple cultivars. Plants 10(3): 1-17.
  23. Mohammadi, M., Modarres-Sanavy, S.A.M., Pirdashti, H., Zand, B. and Tahmasebi-Sarvestani, Z. (2019). Arbuscular mycorrhizae alleviate water deficit stress and improve antioxidant response, more than nitrogen fixing bacteria or chemical fertilizer in the evening primrose. Rhizosphere 9: 76-89. 
  24. Obanda, M., Owuor, P.O. and Taylor, S.J. (1997). Flavanol composition and caffeine content of green leaf as quality potential indicators of kenyan black teas. J. Sci. Food Agric. 74(2): 209-215. 
  25. Oral, E., Tunçtürk, R. and Tunçtürk, M. (2021). The effect of rhizobacteria in the reducing drought stress in soybean (Glycine max L.). Legum. Res. - An Int. J. 44: 1172-1178. 
  26. Passioura, J.B. (1996). Drought and drought tolerance. Plant Growth Regul. 20(2): 79-83. 
  27. Premachandra, G.S., Saneoka, H. and Ogata, S. (1990). Cell membrane stability, an indicator of drought tolerance, as affected by applied nitrogen in soyabean. J. Agric. Sci. 115(1): 63-66. 
  28. Quettier-deleu, C., Gressier, B., Vasseur, J. Dine,, T., Brune, C. et al. (2000). determinacion TLc y folin modificado de polifenoles quetier delau 2000.pdf. J. Ethnopharmacol. 72: 35-42.
  29. Rashid, U., Yasmin, H., Hassan, M.N., Naz, R., Nosheen, A., et al. (2021). Drought-tolerant Bacillus megaterium isolated from semi-arid conditions induces systemic tolerance of wheat under drought conditions. Plant Cell Rep. 1-21.
  30. Rustioni, L. and Bianchi, D. (2021). Drought increases chlorophyll content in stems of Vitis interspecific hybrids. Theor. Exp. Plant Physiol. 33(1): 69-78. 
  31. Saikia, J., Sarma, R.K. Dhandia,, R., Yadav, A., Bharali, R., et al. (2018). Alleviation of drought stress in pulse crops with ACC deaminase producing rhizobacteria isolated from acidic soil of Northeast India. Sci. Rep. 8(1): 1-16. 
  32. Sairam, R.K. (1994). Effect of moisturestress on physiological activities of two contrasting wheat genotypes. Indian Journal of Experimental Biology. 32: 594-597.
  33. Sairam, R.K. and Saxena, D.C. (2000). Oxidative stress and antioxidants in wheat genotypes: Possible mechanism of water stress tolerance. J. Agron. Crop Sci. 184(1): 55-61.
  34. Sandhya, V., Ali, S.Z., Grover, M., Reddy, G. and Venkateswarlu, B. (2010). Effect of plant growth promoting Pseudomonas spp. on compatible solutes, antioxidant status and plant growth of maize under drought stress. Plant Growth Regul. 62(1): 21-30. 
  35. Sharma, R.D. and Raghuram, T.C. (1990). Hypoglycaemic effect of fenugreek seeds in non-insulin dependent diabetic subjects. Nutr. Res. 10(7): 731-739. 
  36. Sharma, K.D. (2021). Impact of different rhizobial strains on physiological responses and seed yield of mungbean [Vigna radiata (L.) Wilczek] under field conditions. Legume Research-An International Journal. 44(6): 679-683.
  37. Shin, Y.K., Bhandari, S.R., Jo, J.S., Song, J.W. and Lee, J.G. (2021). Effect of drought stress on chlorophyll fluorescence parameters, phytochemical contents and antioxidant activities in lettuce seedlings. Horticulturae. 7(8): 238.
  38. Shukla, N., Awasthi, R.P., Rawat, L. and Kumar, J. (2012). Biochemical and physiological responses of rice (Oryza sativa L.) as influenced by Trichoderma harzianum under drought stress. Plant Physiol. Biochem. 54: 78-88. 
  39. Siracusa, L., Gresta, F., Sperlinga, E. and Ruberto, G. (2017). Effect of sowing time and soil water content on grain yield and phenolic profile of four buckwheat (Fagopyrum esculentum Moench.) varieties in a Mediterranean environment. J. Food Compos. Anal. 62: 1-7. 
  40. Vardharajula, S., Ali, S.Z., Grover, M., Reddy, G. and Bandi, V. (2011). Drought-tolerant plant growth promoting Bacillus spp.: Effect on growth,osmol ytes,and antioxidant status of maize under drought stress. J. Plant Interact. 6(1): 1-14. 
  41. Wu, C., Ning, F., Zhang, Q., Wu, X. and Wang, W. (2017). Enhancing omics research of crop responses to drought under field conditions. Front. Plant Sci. 8: 174.
  42. Zamani, Z., Amiri, H. and Ismaili, A. (2020). Improving drought stress tolerance in fenugreek (Trigonella foenum-graecum) by exogenous melatonin. Plant Biosyst. 154(5): 643-655. 
  43. Zhou, X.V., Larson, J.A., Boyer, C.N., Roberts, R.K. and Tyler, D.D. (2017). Tillage and cover crop impacts on economics of cotton production in Tennessee. Agron. J. 109(5): 2087-2096. 

Global Footprints